Location

Location ANSS

The ANSS event ID is ak022auilau5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022auilau5/executive.

2022/08/24 13:03:56 63.834 -148.839 111.5 4.1 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2022/08/24 13:03:56:0  63.83 -148.84 111.5 4.1 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.G23K AK.G24K AK.GHO 
   AK.H22K AK.H23K AK.H24K AK.HARP AK.I23K AK.J25K AK.J26L 
   AK.K20K AK.KNK AK.L20K AK.M19K AK.MCK AK.MLY AK.NEA2 AK.PAX 
   AK.POKR AK.RND AK.SAW AK.SCM AK.WRH AT.MENT AT.PMR IU.COLA 
   US.EGAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 9.55e+21 dyne-cm
  Mw = 3.92 
  Z  = 110 km
  Plane   Strike  Dip  Rake
   NP1       72    86   140
   NP2      165    50     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.55e+21     30      20
    N   0.00e+00     50     247
    P  -9.55e+21     24     125

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.59e+21
       Mxy     6.11e+21
       Mxz     5.94e+21
       Myy    -4.41e+21
       Myz    -1.44e+21
       Mzz     8.20e+20
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ----##################              
              ------############   #######           
             ------############# T ########          
           -------##############   ##########        
          --------############################       
         --------##############################      
        ---------###############################     
        ---------###########################----     
       ----------######################----------    
       -----------################---------------    
       -----------##########---------------------    
       -----------#####--------------------------    
        --------###-----------------------------     
        ############----------------------------     
         ###########-------------------   -----      
          ###########------------------ P ----       
           ############----------------   ---        
             ###########-------------------          
              ############----------------           
                 ###########-----------              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.20e+20   5.94e+21   1.44e+21 
  5.94e+21   3.59e+21  -6.11e+21 
  1.44e+21  -6.11e+21  -4.41e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220824130356/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 165
      DIP = 50
     RAKE = 5
       MW = 3.92
       HS = 110.0

The NDK file is 20220824130356.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   120    60    80   2.97 0.1456
WVFGRD96    4.0   255    75   -40   3.00 0.1756
WVFGRD96    6.0   255    65   -30   3.07 0.2077
WVFGRD96    8.0   250    50   -40   3.19 0.2316
WVFGRD96   10.0   250    50   -40   3.24 0.2489
WVFGRD96   12.0   250    50   -40   3.28 0.2572
WVFGRD96   14.0   255    50   -35   3.31 0.2566
WVFGRD96   16.0   315    65   -30   3.33 0.2587
WVFGRD96   18.0   315    70   -30   3.35 0.2624
WVFGRD96   20.0     5    65    30   3.37 0.2686
WVFGRD96   22.0     5    65    30   3.40 0.2838
WVFGRD96   24.0     5    65    30   3.42 0.2983
WVFGRD96   26.0     5    65    30   3.45 0.3089
WVFGRD96   28.0     5    65    30   3.46 0.3145
WVFGRD96   30.0     5    65    30   3.48 0.3161
WVFGRD96   32.0     0    65    25   3.49 0.3168
WVFGRD96   34.0     5    60    30   3.51 0.3191
WVFGRD96   36.0     0    65    25   3.52 0.3223
WVFGRD96   38.0     0    65    20   3.54 0.3269
WVFGRD96   40.0     5    60    30   3.62 0.3327
WVFGRD96   42.0     5    60    30   3.64 0.3303
WVFGRD96   44.0     5    65    35   3.67 0.3263
WVFGRD96   46.0    -5    70    15   3.66 0.3264
WVFGRD96   48.0   165    75   -40   3.70 0.3301
WVFGRD96   50.0   165    75   -40   3.72 0.3396
WVFGRD96   52.0   165    75   -35   3.72 0.3486
WVFGRD96   54.0   165    70   -30   3.72 0.3618
WVFGRD96   56.0   165    65   -25   3.73 0.3821
WVFGRD96   58.0   165    65   -20   3.74 0.4076
WVFGRD96   60.0   165    60   -15   3.75 0.4332
WVFGRD96   62.0   170    50     5   3.78 0.4623
WVFGRD96   64.0   170    45    10   3.81 0.4854
WVFGRD96   66.0   175    45    20   3.83 0.5042
WVFGRD96   68.0   175    45    20   3.84 0.5206
WVFGRD96   70.0   175    45    20   3.85 0.5332
WVFGRD96   72.0   165    50     0   3.83 0.5445
WVFGRD96   74.0   165    50     0   3.83 0.5595
WVFGRD96   76.0   165    50     0   3.84 0.5730
WVFGRD96   78.0   165    45     5   3.86 0.5856
WVFGRD96   80.0   165    45     5   3.87 0.5967
WVFGRD96   82.0   165    45     5   3.87 0.6077
WVFGRD96   84.0   165    45     5   3.88 0.6165
WVFGRD96   86.0   165    45     5   3.88 0.6247
WVFGRD96   88.0   165    45     5   3.89 0.6315
WVFGRD96   90.0   165    45     5   3.89 0.6386
WVFGRD96   92.0   165    45     5   3.89 0.6443
WVFGRD96   94.0   165    45     5   3.90 0.6481
WVFGRD96   96.0   165    45     5   3.90 0.6521
WVFGRD96   98.0   165    45     5   3.90 0.6548
WVFGRD96  100.0   165    50     5   3.91 0.6579
WVFGRD96  102.0   165    50     5   3.91 0.6596
WVFGRD96  104.0   165    50     5   3.91 0.6617
WVFGRD96  106.0   165    50     5   3.92 0.6618
WVFGRD96  108.0   165    50     5   3.92 0.6630
WVFGRD96  110.0   165    50     5   3.92 0.6643
WVFGRD96  112.0   165    50     5   3.93 0.6642
WVFGRD96  114.0   165    50     5   3.93 0.6638
WVFGRD96  116.0   165    50     5   3.93 0.6629
WVFGRD96  118.0   165    50     5   3.93 0.6622
WVFGRD96  120.0   165    50     5   3.94 0.6604
WVFGRD96  122.0   160    50     0   3.94 0.6593
WVFGRD96  124.0   160    50     0   3.94 0.6581
WVFGRD96  126.0   160    50     0   3.94 0.6567
WVFGRD96  128.0   160    50     0   3.94 0.6558
WVFGRD96  130.0   160    50     0   3.95 0.6535
WVFGRD96  132.0   160    50     0   3.95 0.6514
WVFGRD96  134.0   160    50     0   3.95 0.6482
WVFGRD96  136.0   160    50     0   3.95 0.6454
WVFGRD96  138.0   160    50     0   3.95 0.6424
WVFGRD96  140.0   160    50     0   3.96 0.6391
WVFGRD96  142.0   160    50     0   3.96 0.6356
WVFGRD96  144.0   160    50     0   3.96 0.6320
WVFGRD96  146.0   160    55     0   3.96 0.6286
WVFGRD96  148.0   160    55     0   3.96 0.6255

The best solution is

WVFGRD96  110.0   165    50     5   3.92 0.6643

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 12:23:04 AM CDT 2024