Location

Location ANSS

The ANSS event ID is ak0228vb1a7q and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0228vb1a7q/executive.

2022/07/12 07:24:58 60.971 -150.945 68.5 4.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2022/07/12 07:24:58:0  60.97 -150.95  68.5 4.8 Alaska
 
 Stations used:
   AK.CAPN AK.FID AK.FIRE AK.GHO AK.GLI AK.HIN AK.K20K AK.KNK 
   AK.M19K AK.N18K AK.N19K AK.P23K AK.Q19K AK.RC01 AK.SAW 
   AK.SCM AK.SKN AK.SSN AK.SWD AV.ILS AV.RED AV.SPCP 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 2.72e+23 dyne-cm
  Mw = 4.89 
  Z  = 72 km
  Plane   Strike  Dip  Rake
   NP1      195    84   -98
   NP2       70    10   -35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.72e+23     39     292
    N   0.00e+00      8     195
    P  -2.72e+23     50      96

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.23e+22
       Mxy    -4.68e+22
       Mxz     6.28e+22
       Myy     3.11e+22
       Myz    -2.57e+23
       Mzz    -5.34e+22
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 ###############-------              
              #################-----------           
             ##################------------          
           ###################---------------        
          ###################-----------------       
         ####################------------------      
        #######   ##########--------------------     
        ####### T ##########--------------------     
       ########   #########---------------------#    
       ####################---------   ---------#    
       ###################---------- P ---------#    
       ###################----------   ---------#    
        #################----------------------#     
        #################---------------------##     
         ################---------------------#      
          ##############--------------------##       
           -############-------------------##        
             -##########-----------------##          
              --#######----------------###           
                 ---###------------####              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.34e+22   6.28e+22   2.57e+23 
  6.28e+22   2.23e+22   4.68e+22 
  2.57e+23   4.68e+22   3.11e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220712072458/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 70
      DIP = 10
     RAKE = -35
       MW = 4.89
       HS = 72.0

The NDK file is 20220712072458.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2022/07/12 07:24:58:0  60.97 -150.95  68.5 4.8 Alaska
 
 Stations used:
   AK.CAPN AK.FID AK.FIRE AK.GHO AK.GLI AK.HIN AK.K20K AK.KNK 
   AK.M19K AK.N18K AK.N19K AK.P23K AK.Q19K AK.RC01 AK.SAW 
   AK.SCM AK.SKN AK.SSN AK.SWD AV.ILS AV.RED AV.SPCP 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 2.72e+23 dyne-cm
  Mw = 4.89 
  Z  = 72 km
  Plane   Strike  Dip  Rake
   NP1      195    84   -98
   NP2       70    10   -35
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.72e+23     39     292
    N   0.00e+00      8     195
    P  -2.72e+23     50      96

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.23e+22
       Mxy    -4.68e+22
       Mxz     6.28e+22
       Myy     3.11e+22
       Myz    -2.57e+23
       Mzz    -5.34e+22
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 ###############-------              
              #################-----------           
             ##################------------          
           ###################---------------        
          ###################-----------------       
         ####################------------------      
        #######   ##########--------------------     
        ####### T ##########--------------------     
       ########   #########---------------------#    
       ####################---------   ---------#    
       ###################---------- P ---------#    
       ###################----------   ---------#    
        #################----------------------#     
        #################---------------------##     
         ################---------------------#      
          ##############--------------------##       
           -############-------------------##        
             -##########-----------------##          
              --#######----------------###           
                 ---###------------####              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.34e+22   6.28e+22   2.57e+23 
  6.28e+22   2.23e+22   4.68e+22 
  2.57e+23   4.68e+22   3.11e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220712072458/index.html
	
-phase Moment Tensor (Mww)
Moment 2.062e+16 N-m
Magnitude 4.81 Mww
Depth 60.5 km
Percent DC 67%
Half Duration 0.66 s
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 350 11 -110
NP2 191 80 -86

Principal Axes
Axis Value Plunge Azimuth
T 2.222e+16 N-m 35 278
N -0.371e+16 N-m 4 10
P -1.851e+16 N-m 55 106


        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   125    65    15   4.07 0.2505
WVFGRD96    4.0   120    80    -5   4.17 0.2928
WVFGRD96    6.0   120    75    -5   4.24 0.3086
WVFGRD96    8.0   280    90    -5   4.32 0.3225
WVFGRD96   10.0   100    70    -5   4.35 0.3194
WVFGRD96   12.0   100    70    -5   4.37 0.3177
WVFGRD96   14.0   100    70     5   4.39 0.3168
WVFGRD96   16.0   100    70     5   4.41 0.3200
WVFGRD96   18.0   100    65     5   4.42 0.3253
WVFGRD96   20.0   100    65     5   4.44 0.3324
WVFGRD96   22.0   100    60     5   4.46 0.3386
WVFGRD96   24.0   100    60    10   4.48 0.3480
WVFGRD96   26.0   105    55    10   4.49 0.3602
WVFGRD96   28.0   105    55    10   4.52 0.3747
WVFGRD96   30.0   105    50    10   4.53 0.3887
WVFGRD96   32.0   100    45    -5   4.55 0.4047
WVFGRD96   34.0   105    50    10   4.57 0.4186
WVFGRD96   36.0   110    50    15   4.58 0.4299
WVFGRD96   38.0   100     5   -25   4.56 0.4443
WVFGRD96   40.0   105     5   -20   4.73 0.4655
WVFGRD96   42.0   110     5   -15   4.74 0.4865
WVFGRD96   44.0    75    10   -40   4.75 0.5057
WVFGRD96   46.0   205    80   -90   4.76 0.5255
WVFGRD96   48.0   200    80   -90   4.77 0.5428
WVFGRD96   50.0   200    80   -90   4.79 0.5611
WVFGRD96   52.0   200    80   -90   4.80 0.5772
WVFGRD96   54.0    15    10   -95   4.81 0.5925
WVFGRD96   56.0   200    80   -90   4.82 0.6069
WVFGRD96   58.0    35    10   -70   4.83 0.6177
WVFGRD96   60.0    40    10   -65   4.84 0.6298
WVFGRD96   62.0    45    10   -60   4.85 0.6373
WVFGRD96   64.0    50    10   -55   4.86 0.6455
WVFGRD96   66.0    55    10   -50   4.87 0.6506
WVFGRD96   68.0    60    10   -45   4.87 0.6570
WVFGRD96   70.0    65    10   -40   4.88 0.6582
WVFGRD96   72.0    70    10   -35   4.89 0.6613
WVFGRD96   74.0    70    10   -35   4.90 0.6612
WVFGRD96   76.0    70    10   -35   4.90 0.6605
WVFGRD96   78.0    70    10   -35   4.91 0.6582
WVFGRD96   80.0    75    10   -30   4.91 0.6536
WVFGRD96   82.0    75    10   -30   4.92 0.6504
WVFGRD96   84.0    75    10   -30   4.92 0.6432
WVFGRD96   86.0    80    10   -25   4.92 0.6381
WVFGRD96   88.0    80    10   -25   4.93 0.6317
WVFGRD96   90.0    80    10   -25   4.93 0.6240
WVFGRD96   92.0    85    15   -20   4.94 0.6165
WVFGRD96   94.0    85    15   -20   4.94 0.6074
WVFGRD96   96.0    85    15   -20   4.94 0.5999
WVFGRD96   98.0    90    15   -15   4.95 0.5923

The best solution is

WVFGRD96   72.0    70    10   -35   4.89 0.6613

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Wed Apr 24 11:42:24 PM CDT 2024