The ANSS event ID is ak0228v89eiv and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0228v89eiv/executive.
2022/07/12 02:58:59 60.389 -149.013 31.5 4.4 Alaska
USGS/SLU Moment Tensor Solution
ENS 2022/07/12 02:58:59:0 60.39 -149.01 31.5 4.4 Alaska
Stations used:
AK.BRLK AK.CAPN AK.FID AK.FIRE AK.GLB AK.GLI AK.K24K AK.KLU
AK.MCAR AK.P23K AK.RC01 AK.RIDG AK.SCM AK.SKN AK.SWD AV.ILS
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 7.59e+22 dyne-cm
Mw = 4.52
Z = 41 km
Plane Strike Dip Rake
NP1 210 60 -65
NP2 347 38 -126
Principal Axes:
Axis Value Plunge Azimuth
T 7.59e+22 12 282
N 0.00e+00 21 17
P -7.59e+22 65 166
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.16e+21
Mxy -1.19e+22
Mxz 3.11e+22
Myy 6.87e+22
Myz -2.18e+22
Mzz -5.95e+22
######--------
#############-------##
############################
#################-----########
#################--------#########
################------------########
###############---------------########
############----------------#########
T ###########------------------########
# ##########--------------------########
#############---------------------########
############----------------------########
###########-----------------------########
##########---------- ----------#######
#########----------- P ----------#######
########----------- ----------######
#######-----------------------######
######----------------------######
####---------------------#####
###--------------------#####
-------------------###
-------------#
Global CMT Convention Moment Tensor:
R T P
-5.95e+22 3.11e+22 2.18e+22
3.11e+22 -9.16e+21 1.19e+22
2.18e+22 1.19e+22 6.87e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220712025859/index.html
|
STK = 210
DIP = 60
RAKE = -65
MW = 4.52
HS = 41.0
The NDK file is 20220712025859.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2022/07/12 02:58:59:0 60.39 -149.01 31.5 4.4 Alaska
Stations used:
AK.BRLK AK.CAPN AK.FID AK.FIRE AK.GLB AK.GLI AK.K24K AK.KLU
AK.MCAR AK.P23K AK.RC01 AK.RIDG AK.SCM AK.SKN AK.SWD AV.ILS
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 7.59e+22 dyne-cm
Mw = 4.52
Z = 41 km
Plane Strike Dip Rake
NP1 210 60 -65
NP2 347 38 -126
Principal Axes:
Axis Value Plunge Azimuth
T 7.59e+22 12 282
N 0.00e+00 21 17
P -7.59e+22 65 166
Moment Tensor: (dyne-cm)
Component Value
Mxx -9.16e+21
Mxy -1.19e+22
Mxz 3.11e+22
Myy 6.87e+22
Myz -2.18e+22
Mzz -5.95e+22
######--------
#############-------##
############################
#################-----########
#################--------#########
################------------########
###############---------------########
############----------------#########
T ###########------------------########
# ##########--------------------########
#############---------------------########
############----------------------########
###########-----------------------########
##########---------- ----------#######
#########----------- P ----------#######
########----------- ----------######
#######-----------------------######
######----------------------######
####---------------------#####
###--------------------#####
-------------------###
-------------#
Global CMT Convention Moment Tensor:
R T P
-5.95e+22 3.11e+22 2.18e+22
3.11e+22 -9.16e+21 1.19e+22
2.18e+22 1.19e+22 6.87e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220712025859/index.html
|
Regional Moment Tensor (Mwr) Moment 4.726e+15 N-m Magnitude 4.38 Mwr Depth 35.0 km Percent DC 66% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 355 48 -118 NP2 214 49 -62 Principal Axes Axis Value Plunge Azimuth T 5.098e+15 N-m 0 284 N -0.861e+15 N-m 21 14 P -4.237e+15 N-m 69 193 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 210 50 85 3.79 0.1947
WVFGRD96 2.0 80 45 95 3.96 0.2529
WVFGRD96 3.0 180 50 -95 3.97 0.2744
WVFGRD96 4.0 185 50 -85 4.00 0.2639
WVFGRD96 5.0 225 80 50 3.98 0.3009
WVFGRD96 6.0 225 75 45 4.00 0.3304
WVFGRD96 7.0 225 75 45 4.02 0.3538
WVFGRD96 8.0 225 80 50 4.08 0.3690
WVFGRD96 9.0 225 80 45 4.09 0.3828
WVFGRD96 10.0 225 80 45 4.10 0.3926
WVFGRD96 11.0 225 80 45 4.12 0.3986
WVFGRD96 12.0 40 90 -45 4.13 0.3986
WVFGRD96 13.0 225 80 40 4.14 0.4032
WVFGRD96 14.0 225 80 40 4.16 0.4033
WVFGRD96 15.0 225 80 40 4.17 0.4022
WVFGRD96 16.0 230 80 40 4.17 0.4014
WVFGRD96 17.0 230 80 40 4.18 0.4008
WVFGRD96 18.0 230 80 40 4.19 0.3997
WVFGRD96 19.0 215 70 -45 4.21 0.4017
WVFGRD96 20.0 220 70 -45 4.21 0.4060
WVFGRD96 21.0 220 70 -45 4.23 0.4109
WVFGRD96 22.0 220 70 -45 4.24 0.4139
WVFGRD96 23.0 220 70 -45 4.25 0.4159
WVFGRD96 24.0 220 75 -45 4.26 0.4173
WVFGRD96 25.0 220 75 -45 4.27 0.4195
WVFGRD96 26.0 220 75 -45 4.28 0.4215
WVFGRD96 27.0 220 75 -45 4.29 0.4227
WVFGRD96 28.0 220 70 -45 4.30 0.4255
WVFGRD96 29.0 220 65 -45 4.31 0.4315
WVFGRD96 30.0 220 65 -45 4.32 0.4384
WVFGRD96 31.0 220 65 -45 4.33 0.4473
WVFGRD96 32.0 215 60 -50 4.35 0.4558
WVFGRD96 33.0 215 60 -55 4.36 0.4635
WVFGRD96 34.0 215 60 -55 4.37 0.4695
WVFGRD96 35.0 215 60 -55 4.38 0.4743
WVFGRD96 36.0 215 60 -55 4.39 0.4767
WVFGRD96 37.0 215 60 -55 4.40 0.4771
WVFGRD96 38.0 215 60 -55 4.41 0.4761
WVFGRD96 39.0 215 60 -55 4.42 0.4730
WVFGRD96 40.0 210 60 -65 4.50 0.4862
WVFGRD96 41.0 210 60 -65 4.52 0.4864
WVFGRD96 42.0 210 60 -65 4.52 0.4848
WVFGRD96 43.0 205 55 -65 4.54 0.4832
WVFGRD96 44.0 205 55 -65 4.54 0.4818
WVFGRD96 45.0 205 55 -65 4.55 0.4793
WVFGRD96 46.0 205 55 -65 4.56 0.4767
WVFGRD96 47.0 205 55 -65 4.56 0.4744
WVFGRD96 48.0 205 55 -65 4.57 0.4712
WVFGRD96 49.0 205 55 -65 4.57 0.4682
WVFGRD96 50.0 205 55 -65 4.58 0.4648
WVFGRD96 51.0 205 55 -65 4.58 0.4605
WVFGRD96 52.0 205 55 -65 4.59 0.4561
WVFGRD96 53.0 205 55 -65 4.59 0.4526
WVFGRD96 54.0 205 55 -65 4.59 0.4537
WVFGRD96 55.0 205 55 -60 4.60 0.4537
WVFGRD96 56.0 205 55 -60 4.60 0.4539
WVFGRD96 57.0 205 55 -60 4.60 0.4537
WVFGRD96 58.0 205 55 -60 4.61 0.4531
WVFGRD96 59.0 210 60 -55 4.60 0.4514
The best solution is
WVFGRD96 41.0 210 60 -65 4.52 0.4864
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00