The ANSS event ID is ak0228qeea2m and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0228qeea2m/executive.
2022/07/09 10:56:01 60.857 -146.845 24.1 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/07/09 10:56:01:0 60.86 -146.85 24.1 4.4 Alaska Stations used: AK.BARN AK.BMR AK.BPAW AK.BRLK AK.CAST AK.CCB AK.CNP AK.CUT AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.GLB AK.GLI AK.HIN AK.HOM AK.J26L AK.KLU AK.KNK AK.L26K AK.LOGN AK.M26K AK.MCAR AK.MCK AK.NEA2 AK.P23K AK.PAX AK.RC01 AK.RND AK.SAW AK.SCM AK.SWD AK.VRDI AT.PMR AV.SPCP Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 3.43e+22 dyne-cm Mw = 4.29 Z = 33 km Plane Strike Dip Rake NP1 331 67 -153 NP2 230 65 -25 Principal Axes: Axis Value Plunge Azimuth T 3.43e+22 2 100 N 0.00e+00 55 8 P -3.43e+22 35 191 Moment Tensor: (dyne-cm) Component Value Mxx -2.12e+22 Mxy -1.04e+22 Mxz 1.56e+22 Myy 3.23e+22 Myz 4.07e+21 Mzz -1.11e+22 -------------- ##-------------------- ########-------------------- ############------------------ ###############----------######### ##################----############## ###################################### ##################-----################# ################--------################ ###############-----------################ #############--------------############### ###########-----------------############ ##########-------------------########### T #######---------------------########### ######-----------------------########### #####-----------------------########## ###-------------------------######## #------------ -----------####### ----------- P -----------##### ---------- -----------#### ---------------------# -------------- Global CMT Convention Moment Tensor: R T P -1.11e+22 1.56e+22 -4.07e+21 1.56e+22 -2.12e+22 1.04e+22 -4.07e+21 1.04e+22 3.23e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220709105601/index.html |
STK = 230 DIP = 65 RAKE = -25 MW = 4.29 HS = 33.0
The NDK file is 20220709105601.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 90 90 0 3.58 0.2238 WVFGRD96 2.0 280 45 85 3.81 0.3030 WVFGRD96 3.0 60 55 0 3.74 0.3239 WVFGRD96 4.0 60 55 5 3.79 0.3529 WVFGRD96 5.0 60 55 5 3.82 0.3799 WVFGRD96 6.0 60 60 10 3.85 0.4048 WVFGRD96 7.0 60 60 10 3.88 0.4260 WVFGRD96 8.0 60 55 15 3.94 0.4487 WVFGRD96 9.0 60 55 15 3.96 0.4638 WVFGRD96 10.0 60 55 15 3.98 0.4768 WVFGRD96 11.0 60 55 15 3.99 0.4888 WVFGRD96 12.0 60 60 20 4.01 0.4989 WVFGRD96 13.0 60 60 15 4.02 0.5072 WVFGRD96 14.0 50 65 -25 4.04 0.5256 WVFGRD96 15.0 50 65 -25 4.06 0.5406 WVFGRD96 16.0 50 65 -25 4.07 0.5546 WVFGRD96 17.0 235 70 -15 4.09 0.5697 WVFGRD96 18.0 235 70 -15 4.11 0.5880 WVFGRD96 19.0 235 70 -15 4.13 0.6056 WVFGRD96 20.0 235 70 -20 4.14 0.6234 WVFGRD96 21.0 230 65 -20 4.16 0.6401 WVFGRD96 22.0 230 65 -20 4.18 0.6562 WVFGRD96 23.0 230 65 -20 4.19 0.6713 WVFGRD96 24.0 230 65 -20 4.20 0.6857 WVFGRD96 25.0 230 65 -20 4.21 0.7006 WVFGRD96 26.0 230 65 -25 4.22 0.7147 WVFGRD96 27.0 230 65 -25 4.23 0.7271 WVFGRD96 28.0 230 65 -25 4.25 0.7382 WVFGRD96 29.0 230 65 -25 4.25 0.7470 WVFGRD96 30.0 230 65 -25 4.26 0.7538 WVFGRD96 31.0 230 65 -25 4.27 0.7576 WVFGRD96 32.0 230 65 -25 4.28 0.7593 WVFGRD96 33.0 230 65 -25 4.29 0.7593 WVFGRD96 34.0 230 65 -25 4.30 0.7571 WVFGRD96 35.0 230 65 -25 4.30 0.7532 WVFGRD96 36.0 230 65 -25 4.31 0.7479 WVFGRD96 37.0 230 65 -25 4.32 0.7412 WVFGRD96 38.0 235 70 -20 4.33 0.7369 WVFGRD96 39.0 235 70 -20 4.35 0.7338 WVFGRD96 40.0 230 65 -25 4.39 0.7380 WVFGRD96 41.0 230 65 -25 4.41 0.7418 WVFGRD96 42.0 230 65 -25 4.42 0.7429 WVFGRD96 43.0 230 65 -25 4.42 0.7402 WVFGRD96 44.0 230 65 -25 4.43 0.7373 WVFGRD96 45.0 230 65 -25 4.44 0.7325 WVFGRD96 46.0 230 65 -25 4.44 0.7269 WVFGRD96 47.0 235 70 -20 4.45 0.7227 WVFGRD96 48.0 235 70 -20 4.45 0.7171 WVFGRD96 49.0 235 70 -20 4.46 0.7117 WVFGRD96 50.0 235 70 -20 4.46 0.7058 WVFGRD96 51.0 235 70 -20 4.46 0.7003 WVFGRD96 52.0 235 70 -20 4.47 0.6928 WVFGRD96 53.0 235 70 -20 4.47 0.6872 WVFGRD96 54.0 235 70 -20 4.47 0.6805 WVFGRD96 55.0 235 75 -20 4.47 0.6745 WVFGRD96 56.0 235 75 -20 4.47 0.6688 WVFGRD96 57.0 235 75 -20 4.48 0.6638 WVFGRD96 58.0 235 75 -20 4.48 0.6580 WVFGRD96 59.0 235 75 -20 4.48 0.6523
The best solution is
WVFGRD96 33.0 230 65 -25 4.29 0.7593
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00