The ANSS event ID is se60401416 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/se60401416/executive.
2022/06/29 23:03:01 34.165 -80.727 2.8 3.6 S. Carolina
USGS/SLU Moment Tensor Solution
ENS 2022/06/29 23:03:01:0 34.17 -80.73 2.8 3.6 S. Carolina
Stations used:
CO.BIRD CO.CASEE CO.CSB CO.TEEBA ET.CPCT IM.TKL N4.152A
N4.154A N4.257A N4.456A N4.KMSC N4.S54A N4.S57A N4.T57A
N4.T59A N4.TIGA N4.U54A N4.U56A N4.V53A N4.V55A N4.V58A
N4.V61A N4.W50A N4.W52A N4.W57A N4.W59A N4.X51A N4.Y52A
N4.Y58A N4.Y60A US.GOGA US.NHSC US.TZTN
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.48e+21 dyne-cm
Mw = 3.53
Z = 2 km
Plane Strike Dip Rake
NP1 201 81 155
NP2 295 65 10
Principal Axes:
Axis Value Plunge Azimuth
T 2.48e+21 24 155
N 0.00e+00 63 2
P -2.48e+21 11 250
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.43e+21
Mxy -1.55e+21
Mxz -6.88e+20
Myy -1.76e+21
Myz 8.20e+20
Mzz 3.30e+20
##############
#################-----
###################---------
###################-----------
####################--------------
####################----------------
---------------#####------------------
--------------------#-------------------
-------------------######---------------
--------------------#########-------------
-------------------#############----------
------------------################--------
------------------##################------
- ------------####################----
- P -----------#######################--
-----------########################
------------########################
-----------########### #########
--------############ T #######
-------############ ######
----##################
##############
Global CMT Convention Moment Tensor:
R T P
3.30e+20 -6.88e+20 -8.20e+20
-6.88e+20 1.43e+21 1.55e+21
-8.20e+20 1.55e+21 -1.76e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220629230301/index.html
|
STK = 295
DIP = 65
RAKE = 10
MW = 3.53
HS = 2.0
The NDK file is 20220629230301.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2022/06/29 23:03:01:0 34.17 -80.73 2.8 3.6 S. Carolina
Stations used:
CO.BIRD CO.CASEE CO.CSB CO.TEEBA ET.CPCT IM.TKL N4.152A
N4.154A N4.257A N4.456A N4.KMSC N4.S54A N4.S57A N4.T57A
N4.T59A N4.TIGA N4.U54A N4.U56A N4.V53A N4.V55A N4.V58A
N4.V61A N4.W50A N4.W52A N4.W57A N4.W59A N4.X51A N4.Y52A
N4.Y58A N4.Y60A US.GOGA US.NHSC US.TZTN
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.48e+21 dyne-cm
Mw = 3.53
Z = 2 km
Plane Strike Dip Rake
NP1 201 81 155
NP2 295 65 10
Principal Axes:
Axis Value Plunge Azimuth
T 2.48e+21 24 155
N 0.00e+00 63 2
P -2.48e+21 11 250
Moment Tensor: (dyne-cm)
Component Value
Mxx 1.43e+21
Mxy -1.55e+21
Mxz -6.88e+20
Myy -1.76e+21
Myz 8.20e+20
Mzz 3.30e+20
##############
#################-----
###################---------
###################-----------
####################--------------
####################----------------
---------------#####------------------
--------------------#-------------------
-------------------######---------------
--------------------#########-------------
-------------------#############----------
------------------################--------
------------------##################------
- ------------####################----
- P -----------#######################--
-----------########################
------------########################
-----------########### #########
--------############ T #######
-------############ ######
----##################
##############
Global CMT Convention Moment Tensor:
R T P
3.30e+20 -6.88e+20 -8.20e+20
-6.88e+20 1.43e+21 1.55e+21
-8.20e+20 1.55e+21 -1.76e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220629230301/index.html
|
Regional Moment Tensor (Mwr) Moment 3.185e+14 N-m Magnitude 3.60 Mwr Depth 2.0 km Percent DC 91% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 20° 50° 167° NP2 118° 80° 41° Principal Axes Axis Value Plunge Azimuth T 3.105e+14 N-m 35° 347° N 0.154e+14 N-m 48° 129° P -3.259e+14 N-m 20° 243° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 295 55 10 3.53 0.6523
WVFGRD96 2.0 295 65 10 3.53 0.6618
WVFGRD96 3.0 295 65 10 3.54 0.6522
WVFGRD96 4.0 295 70 15 3.55 0.6381
WVFGRD96 5.0 295 75 25 3.56 0.6267
WVFGRD96 6.0 120 70 30 3.57 0.6220
WVFGRD96 7.0 115 75 30 3.57 0.6226
WVFGRD96 8.0 115 75 30 3.58 0.6218
WVFGRD96 9.0 115 75 25 3.58 0.6206
WVFGRD96 10.0 115 75 30 3.60 0.6185
WVFGRD96 11.0 115 75 30 3.61 0.6150
WVFGRD96 12.0 115 75 25 3.61 0.6107
WVFGRD96 13.0 115 75 25 3.62 0.6059
WVFGRD96 14.0 115 75 25 3.62 0.6002
WVFGRD96 15.0 115 75 25 3.63 0.5938
WVFGRD96 16.0 115 75 25 3.64 0.5873
WVFGRD96 17.0 290 80 -25 3.64 0.5809
WVFGRD96 18.0 290 80 -25 3.65 0.5773
WVFGRD96 19.0 290 80 -20 3.66 0.5728
WVFGRD96 20.0 115 70 -15 3.68 0.5714
WVFGRD96 21.0 115 70 -15 3.68 0.5678
WVFGRD96 22.0 115 70 -15 3.69 0.5633
WVFGRD96 23.0 115 70 -15 3.70 0.5593
WVFGRD96 24.0 110 70 -15 3.70 0.5554
WVFGRD96 25.0 115 75 -15 3.71 0.5501
WVFGRD96 26.0 115 75 -15 3.71 0.5442
WVFGRD96 27.0 115 75 -15 3.72 0.5390
WVFGRD96 28.0 115 75 -15 3.73 0.5327
WVFGRD96 29.0 115 75 -15 3.73 0.5254
The best solution is
WVFGRD96 2.0 295 65 10 3.53 0.6618
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00