The ANSS event ID is tx2022fvwu and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2022fvwu/executive.
2022/03/25 03:01:58 31.669 -104.420 6.8 4.6 Texas
USGS/SLU Moment Tensor Solution ENS 2022/03/25 03:01:58:0 31.67 -104.42 6.8 4.6 Texas Stations used: 4O.MID02 EP.KIDD GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 IM.TX31 IU.ANMO N4.MSTX SC.121A SC.Y22A TX.ALPN TX.MB01 TX.MB05 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB05 TX.PB11 TX.PB17 TX.PECS TX.POST TX.SAND TX.SN07 TX.SN08 TX.VHRN US.MNTX Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 10 km Plane Strike Dip Rake NP1 101 61 -84 NP2 270 30 -100 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 15 187 N 0.00e+00 5 279 P -2.60e+22 74 26 Moment Tensor: (dyne-cm) Component Value Mxx 2.22e+22 Mxy 2.26e+21 Mxz -1.28e+22 Myy 5.38e+13 Myz -3.91e+21 Mzz -2.22e+22 ############## ###################### ############################ #########------------######### ######----------------------###### ####----------------------------#### ###--------------------------------### ###----------------------------------### #------------------- ----------------# -#------------------- P -----------------# -##------------------ -----------------# #####------------------------------------- ########---------------------------------- ##########------------------------------ ###############---------------------#### ###################################### #################################### ################################## ############################## ########## ############### ####### T ############ ### ######## Global CMT Convention Moment Tensor: R T P -2.22e+22 -1.28e+22 3.91e+21 -1.28e+22 2.22e+22 -2.26e+21 3.91e+21 -2.26e+21 5.38e+13 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220325030158/index.html |
STK = 270 DIP = 30 RAKE = -100 MW = 4.21 HS = 10.0
The NDK file is 20220325030158.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2022/03/25 03:01:58:0 31.67 -104.42 6.8 4.6 Texas Stations used: 4O.MID02 EP.KIDD GM.NMP02 GM.NMP25 GM.NMP41 GM.NMP44 GM.NMP45 IM.TX31 IU.ANMO N4.MSTX SC.121A SC.Y22A TX.ALPN TX.MB01 TX.MB05 TX.MNHN TX.ODSA TX.OZNA TX.PB01 TX.PB05 TX.PB11 TX.PB17 TX.PECS TX.POST TX.SAND TX.SN07 TX.SN08 TX.VHRN US.MNTX Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 10 km Plane Strike Dip Rake NP1 101 61 -84 NP2 270 30 -100 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 15 187 N 0.00e+00 5 279 P -2.60e+22 74 26 Moment Tensor: (dyne-cm) Component Value Mxx 2.22e+22 Mxy 2.26e+21 Mxz -1.28e+22 Myy 5.38e+13 Myz -3.91e+21 Mzz -2.22e+22 ############## ###################### ############################ #########------------######### ######----------------------###### ####----------------------------#### ###--------------------------------### ###----------------------------------### #------------------- ----------------# -#------------------- P -----------------# -##------------------ -----------------# #####------------------------------------- ########---------------------------------- ##########------------------------------ ###############---------------------#### ###################################### #################################### ################################## ############################## ########## ############### ####### T ############ ### ######## Global CMT Convention Moment Tensor: R T P -2.22e+22 -1.28e+22 3.91e+21 -1.28e+22 2.22e+22 -2.26e+21 3.91e+21 -2.26e+21 5.38e+13 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220325030158/index.html |
Regional Moment Tensor (Mwr) Moment 2.307e+15 N-m Magnitude 4.18 Mwr Depth 9.0 km Percent DC 88% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 263° 20° -108° NP2 102° 71° -83° Principal Axes Axis Value Plunge Azimuth T 2.378e+15 N-m 25° 187° N -0.148e+15 N-m 6° 280° P -2.229e+15 N-m 64° 23° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 280 60 25 3.82 0.3257 WVFGRD96 2.0 160 50 80 3.93 0.3421 WVFGRD96 3.0 145 80 75 4.06 0.4205 WVFGRD96 4.0 150 75 75 4.06 0.4944 WVFGRD96 5.0 100 75 -80 4.10 0.5398 WVFGRD96 6.0 100 70 -80 4.11 0.5993 WVFGRD96 7.0 100 65 -80 4.13 0.6405 WVFGRD96 8.0 100 65 -85 4.20 0.6599 WVFGRD96 9.0 100 65 -85 4.21 0.6804 WVFGRD96 10.0 270 30 -100 4.21 0.6824 WVFGRD96 11.0 100 60 -85 4.22 0.6721 WVFGRD96 12.0 100 60 -85 4.22 0.6530 WVFGRD96 13.0 105 60 -80 4.22 0.6286 WVFGRD96 14.0 105 65 -75 4.21 0.6041 WVFGRD96 15.0 105 65 -75 4.22 0.5789 WVFGRD96 16.0 110 65 -70 4.21 0.5535 WVFGRD96 17.0 110 65 -70 4.22 0.5292 WVFGRD96 18.0 110 65 -70 4.22 0.5055 WVFGRD96 19.0 115 70 -60 4.22 0.4847 WVFGRD96 20.0 115 70 -60 4.23 0.4646 WVFGRD96 21.0 115 70 -60 4.24 0.4473 WVFGRD96 22.0 115 70 -60 4.24 0.4285 WVFGRD96 23.0 115 70 -60 4.25 0.4105 WVFGRD96 24.0 115 70 -60 4.25 0.3937 WVFGRD96 25.0 120 75 -55 4.25 0.3779 WVFGRD96 26.0 120 75 -55 4.25 0.3630 WVFGRD96 27.0 120 75 -55 4.26 0.3489 WVFGRD96 28.0 120 75 -55 4.26 0.3350 WVFGRD96 29.0 125 75 -50 4.26 0.3223
The best solution is
WVFGRD96 10.0 270 30 -100 4.21 0.6824
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00