The ANSS event ID is ak0222cjwd3a and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0222cjwd3a/executive.
2022/02/20 12:58:15 61.785 -151.807 111.2 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/02/20 12:58:15:0 61.78 -151.81 111.2 4.3 Alaska Stations used: AK.CNP AK.CUT AK.DHY AK.FIRE AK.GHO AK.L22K AK.O18K AK.O19K AK.RC01 AK.RND AK.SKN AK.SLK AK.SSN AK.SWD AV.SPCP AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.20e+22 dyne-cm Mw = 4.27 Z = 110 km Plane Strike Dip Rake NP1 55 80 25 NP2 320 65 169 Principal Axes: Axis Value Plunge Azimuth T 3.20e+22 25 280 N 0.00e+00 63 75 P -3.20e+22 10 186 Moment Tensor: (dyne-cm) Component Value Mxx -2.99e+22 Mxy -7.59e+21 Mxz 7.52e+21 Myy 2.53e+22 Myz -1.14e+22 Mzz 4.62e+21 -------------- ---------------------- ##-------------------------- ########---------------------- #############--------------------- #################-----------------## ####################-------------##### #######################---------######## ### ##################------########## #### T ####################--############# #### ####################-############## ########################-----############# #####################---------############ ##################------------########## ###############----------------######### ##########---------------------####### ######-------------------------##### ------------------------------#### ----------------------------## ---------------------------# -------- ----------- ---- P ------- Global CMT Convention Moment Tensor: R T P 4.62e+21 7.52e+21 1.14e+22 7.52e+21 -2.99e+22 7.59e+21 1.14e+22 7.59e+21 2.53e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220220125815/index.html |
STK = 55 DIP = 80 RAKE = 25 MW = 4.27 HS = 110.0
The NDK file is 20220220125815.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 50 80 -15 3.48 0.3326 WVFGRD96 4.0 50 75 -15 3.56 0.3864 WVFGRD96 6.0 230 70 -20 3.62 0.4042 WVFGRD96 8.0 230 70 -20 3.66 0.4160 WVFGRD96 10.0 230 70 -15 3.68 0.4216 WVFGRD96 12.0 235 75 -5 3.71 0.4248 WVFGRD96 14.0 235 75 -5 3.74 0.4251 WVFGRD96 16.0 235 75 -5 3.76 0.4266 WVFGRD96 18.0 235 80 15 3.78 0.4283 WVFGRD96 20.0 235 75 0 3.80 0.4320 WVFGRD96 22.0 235 75 0 3.82 0.4377 WVFGRD96 24.0 240 70 15 3.87 0.4440 WVFGRD96 26.0 240 75 15 3.89 0.4512 WVFGRD96 28.0 240 75 15 3.91 0.4592 WVFGRD96 30.0 240 75 10 3.93 0.4655 WVFGRD96 32.0 240 75 10 3.95 0.4733 WVFGRD96 34.0 240 75 5 3.98 0.4769 WVFGRD96 36.0 240 75 5 4.00 0.4827 WVFGRD96 38.0 240 75 5 4.03 0.4843 WVFGRD96 40.0 240 70 5 4.08 0.4844 WVFGRD96 42.0 240 75 5 4.09 0.4825 WVFGRD96 44.0 235 70 -10 4.10 0.4838 WVFGRD96 46.0 235 70 -10 4.12 0.4922 WVFGRD96 48.0 235 75 -10 4.13 0.5024 WVFGRD96 50.0 235 75 -15 4.15 0.5131 WVFGRD96 52.0 235 75 -15 4.17 0.5250 WVFGRD96 54.0 235 80 -15 4.17 0.5363 WVFGRD96 56.0 235 80 -15 4.18 0.5454 WVFGRD96 58.0 230 75 -25 4.19 0.5546 WVFGRD96 60.0 235 80 -15 4.20 0.5597 WVFGRD96 62.0 235 85 -15 4.19 0.5643 WVFGRD96 64.0 235 85 -15 4.20 0.5700 WVFGRD96 66.0 235 85 -15 4.21 0.5740 WVFGRD96 68.0 235 85 -15 4.22 0.5787 WVFGRD96 70.0 235 85 -15 4.22 0.5823 WVFGRD96 72.0 235 85 -15 4.23 0.5859 WVFGRD96 74.0 235 85 -15 4.24 0.5885 WVFGRD96 76.0 235 85 -15 4.24 0.5911 WVFGRD96 78.0 235 90 -25 4.23 0.5934 WVFGRD96 80.0 235 90 -25 4.24 0.5967 WVFGRD96 82.0 235 90 -25 4.24 0.5987 WVFGRD96 84.0 235 90 -25 4.24 0.6009 WVFGRD96 86.0 55 85 25 4.24 0.6042 WVFGRD96 88.0 55 85 25 4.24 0.6063 WVFGRD96 90.0 55 85 25 4.25 0.6084 WVFGRD96 92.0 55 85 25 4.25 0.6098 WVFGRD96 94.0 55 85 25 4.25 0.6112 WVFGRD96 96.0 55 85 25 4.26 0.6120 WVFGRD96 98.0 55 85 25 4.26 0.6124 WVFGRD96 100.0 55 85 25 4.26 0.6129 WVFGRD96 102.0 55 80 25 4.26 0.6128 WVFGRD96 104.0 55 80 25 4.26 0.6127 WVFGRD96 106.0 55 80 25 4.26 0.6129 WVFGRD96 108.0 55 80 25 4.27 0.6133 WVFGRD96 110.0 55 80 25 4.27 0.6141 WVFGRD96 112.0 55 80 25 4.28 0.6138 WVFGRD96 114.0 55 80 25 4.28 0.6130 WVFGRD96 116.0 55 80 25 4.28 0.6120 WVFGRD96 118.0 55 80 25 4.29 0.6111 WVFGRD96 120.0 55 80 25 4.29 0.6115 WVFGRD96 122.0 55 80 25 4.29 0.6109 WVFGRD96 124.0 55 80 25 4.30 0.6091 WVFGRD96 126.0 55 75 30 4.29 0.6068 WVFGRD96 128.0 55 75 30 4.29 0.6077 WVFGRD96 130.0 55 75 30 4.30 0.6068 WVFGRD96 132.0 55 75 30 4.30 0.6047 WVFGRD96 134.0 55 75 30 4.30 0.6033 WVFGRD96 136.0 55 75 30 4.30 0.6031 WVFGRD96 138.0 55 75 30 4.31 0.6012 WVFGRD96 140.0 55 75 30 4.31 0.5994 WVFGRD96 142.0 55 75 30 4.31 0.5987 WVFGRD96 144.0 55 75 30 4.32 0.5971 WVFGRD96 146.0 55 75 30 4.32 0.5955 WVFGRD96 148.0 55 75 30 4.32 0.5945
The best solution is
WVFGRD96 110.0 55 80 25 4.27 0.6141
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00