The ANSS event ID is ak022ytdd55 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak022ytdd55/executive.
2022/01/21 05:18:26 60.316 -152.360 115.3 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2022/01/21 05:18:26:0 60.32 -152.36 115.3 5.1 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.CUT AK.DHY AK.FIRE AK.GHO AK.GLI AK.HIN AK.HOM AK.K20K AK.KNK AK.L18K AK.L20K AK.L22K AK.M20K AK.MCK AK.N18K AK.N19K AK.O18K AK.O19K AK.P17K AK.P23K AK.R18K AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AT.PMR AV.ILS AV.STLK II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.27e+23 dyne-cm Mw = 5.02 Z = 96 km Plane Strike Dip Rake NP1 55 85 25 NP2 323 65 174 Principal Axes: Axis Value Plunge Azimuth T 4.27e+23 21 282 N 0.00e+00 65 66 P -4.27e+23 14 186 Moment Tensor: (dyne-cm) Component Value Mxx -3.83e+23 Mxy -1.17e+23 Mxz 1.26e+23 Myy 3.52e+23 Myz -1.29e+23 Mzz 3.13e+22 -------------- ---------------------- ####------------------------ #########--------------------- ##############-------------------- #################----------------### ####################------------###### #######################--------######### ## ###################----############ ### T #################################### ### ###################---############## ######################-------############# ###################-----------############ ###############---------------########## #############------------------######### #########----------------------####### ####--------------------------###### -----------------------------##### ----------------------------## ---------- --------------# ------- P ------------ --- -------- Global CMT Convention Moment Tensor: R T P 3.13e+22 1.26e+23 1.29e+23 1.26e+23 -3.83e+23 1.17e+23 1.29e+23 1.17e+23 3.52e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220121051826/index.html |
STK = 55 DIP = 85 RAKE = 25 MW = 5.02 HS = 96.0
The NDK file is 20220121051826.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2022/01/21 05:18:26:0 60.32 -152.36 115.3 5.1 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.CUT AK.DHY AK.FIRE AK.GHO AK.GLI AK.HIN AK.HOM AK.K20K AK.KNK AK.L18K AK.L20K AK.L22K AK.M20K AK.MCK AK.N18K AK.N19K AK.O18K AK.O19K AK.P17K AK.P23K AK.R18K AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AT.PMR AV.ILS AV.STLK II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.27e+23 dyne-cm Mw = 5.02 Z = 96 km Plane Strike Dip Rake NP1 55 85 25 NP2 323 65 174 Principal Axes: Axis Value Plunge Azimuth T 4.27e+23 21 282 N 0.00e+00 65 66 P -4.27e+23 14 186 Moment Tensor: (dyne-cm) Component Value Mxx -3.83e+23 Mxy -1.17e+23 Mxz 1.26e+23 Myy 3.52e+23 Myz -1.29e+23 Mzz 3.13e+22 -------------- ---------------------- ####------------------------ #########--------------------- ##############-------------------- #################----------------### ####################------------###### #######################--------######### ## ###################----############ ### T #################################### ### ###################---############## ######################-------############# ###################-----------############ ###############---------------########## #############------------------######### #########----------------------####### ####--------------------------###### -----------------------------##### ----------------------------## ---------- --------------# ------- P ------------ --- -------- Global CMT Convention Moment Tensor: R T P 3.13e+22 1.26e+23 1.29e+23 1.26e+23 -3.83e+23 1.17e+23 1.29e+23 1.17e+23 3.52e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220121051826/index.html |
W-phase Moment Tensor (Mww) Moment 5.174e+16 N-m Magnitude 5.08 Mww Depth 100.5 km Percent DC 97% Half Duration 0.89 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 325° 86° 177° NP2 55° 87° 4° Principal Axes Axis Value Plunge Azimuth T 5.208e+16 N-m 5° 280° N -0.070e+16 N-m 85° 93° P -5.138e+16 N-m 1° 190° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 325 85 0 4.07 0.2649 WVFGRD96 4.0 325 80 5 4.19 0.3204 WVFGRD96 6.0 325 80 -10 4.26 0.3459 WVFGRD96 8.0 325 80 -10 4.34 0.3643 WVFGRD96 10.0 325 80 -10 4.39 0.3609 WVFGRD96 12.0 325 85 -5 4.43 0.3505 WVFGRD96 14.0 145 85 5 4.45 0.3327 WVFGRD96 16.0 325 85 0 4.47 0.3093 WVFGRD96 18.0 325 85 5 4.48 0.2810 WVFGRD96 20.0 145 80 -5 4.49 0.2511 WVFGRD96 22.0 235 75 10 4.51 0.2492 WVFGRD96 24.0 235 80 5 4.52 0.2515 WVFGRD96 26.0 240 80 5 4.54 0.2521 WVFGRD96 28.0 240 85 -10 4.55 0.2508 WVFGRD96 30.0 240 90 -10 4.56 0.2485 WVFGRD96 32.0 60 90 15 4.57 0.2470 WVFGRD96 34.0 240 90 -15 4.58 0.2440 WVFGRD96 36.0 240 90 -20 4.61 0.2429 WVFGRD96 38.0 240 90 -20 4.63 0.2470 WVFGRD96 40.0 60 90 30 4.70 0.2592 WVFGRD96 42.0 60 85 20 4.72 0.2659 WVFGRD96 44.0 60 85 20 4.74 0.2750 WVFGRD96 46.0 60 80 20 4.76 0.2857 WVFGRD96 48.0 60 80 15 4.78 0.2989 WVFGRD96 50.0 60 80 15 4.80 0.3145 WVFGRD96 52.0 60 80 20 4.82 0.3357 WVFGRD96 54.0 60 80 15 4.83 0.3598 WVFGRD96 56.0 60 80 20 4.86 0.3892 WVFGRD96 58.0 55 85 20 4.88 0.4221 WVFGRD96 60.0 55 85 20 4.89 0.4586 WVFGRD96 62.0 55 85 20 4.91 0.4957 WVFGRD96 64.0 55 85 25 4.93 0.5343 WVFGRD96 66.0 55 90 25 4.95 0.5712 WVFGRD96 68.0 55 90 25 4.96 0.6056 WVFGRD96 70.0 235 90 -25 4.97 0.6300 WVFGRD96 72.0 55 90 25 4.98 0.6413 WVFGRD96 74.0 235 90 -25 4.98 0.6464 WVFGRD96 76.0 55 90 25 4.99 0.6514 WVFGRD96 78.0 55 85 25 4.99 0.6547 WVFGRD96 80.0 55 85 25 4.99 0.6572 WVFGRD96 82.0 55 85 25 5.00 0.6590 WVFGRD96 84.0 55 85 25 5.00 0.6613 WVFGRD96 86.0 55 85 25 5.01 0.6619 WVFGRD96 88.0 55 85 25 5.01 0.6622 WVFGRD96 90.0 55 85 25 5.01 0.6621 WVFGRD96 92.0 55 85 25 5.02 0.6634 WVFGRD96 94.0 55 85 25 5.02 0.6642 WVFGRD96 96.0 55 85 25 5.02 0.6642 WVFGRD96 98.0 55 85 25 5.03 0.6625 WVFGRD96 100.0 55 85 25 5.03 0.6594 WVFGRD96 102.0 55 85 25 5.03 0.6591 WVFGRD96 104.0 55 85 25 5.03 0.6584 WVFGRD96 106.0 55 85 25 5.04 0.6560 WVFGRD96 108.0 55 85 25 5.04 0.6523 WVFGRD96 110.0 55 85 25 5.04 0.6515 WVFGRD96 112.0 55 85 25 5.05 0.6486 WVFGRD96 114.0 55 85 25 5.05 0.6434 WVFGRD96 116.0 55 85 25 5.05 0.6422 WVFGRD96 118.0 55 80 20 5.05 0.6399 WVFGRD96 120.0 55 80 20 5.05 0.6353 WVFGRD96 122.0 55 80 20 5.05 0.6343 WVFGRD96 124.0 55 80 20 5.06 0.6312 WVFGRD96 126.0 55 80 20 5.06 0.6269 WVFGRD96 128.0 55 80 20 5.06 0.6260 WVFGRD96 130.0 55 80 20 5.06 0.6216 WVFGRD96 132.0 55 80 20 5.06 0.6187 WVFGRD96 134.0 55 80 20 5.07 0.6161 WVFGRD96 136.0 55 80 20 5.07 0.6114 WVFGRD96 138.0 55 80 20 5.07 0.6091 WVFGRD96 140.0 55 80 25 5.07 0.6033 WVFGRD96 142.0 55 80 25 5.08 0.6022 WVFGRD96 144.0 55 80 25 5.08 0.5968 WVFGRD96 146.0 55 80 25 5.08 0.5932 WVFGRD96 148.0 55 80 25 5.08 0.5893
The best solution is
WVFGRD96 96.0 55 85 25 5.02 0.6642
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00