The ANSS event ID is us7000ga56 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000ga56/executive.
2022/01/08 08:16:42 60.390 -140.533 37.8 5.2 Yukon, Canada
USGS/SLU Moment Tensor Solution
ENS 2022/01/08 08:16:42:0 60.39 -140.53 37.8 5.2 Yukon, Canada
Stations used:
AK.BARN AK.BMR AK.CRQ AK.CYK AK.DIV AK.EYAK AK.FID AK.GLB
AK.GLI AK.GRNC AK.HARP AK.HIN AK.KAI AK.KIAG AK.KLU AK.L26K
AK.LOGN AK.M26K AK.M27K AK.MCAR AK.PIN AK.PNL AK.PS12
AK.PTPK AK.RAG AK.SAMH AK.TGL AK.VMT AK.VRDI AT.SKAG
AV.N25K CN.BRWY CN.BVCY CN.PLBC CN.WHY CN.YUK3
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 5.82e+23 dyne-cm
Mw = 5.11
Z = 44 km
Plane Strike Dip Rake
NP1 205 79 -139
NP2 105 50 -15
Principal Axes:
Axis Value Plunge Azimuth
T 5.82e+23 18 329
N 0.00e+00 48 218
P -5.82e+23 36 73
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.54e+23
Mxy -3.36e+23
Mxz 6.83e+22
Myy -2.05e+23
Myz -3.56e+23
Mzz -1.48e+23
##############
##################----
#### #############--------
##### T ###########-----------
####### ##########--------------
####################----------------
####################------------------
####################----------- ------
###################------------ P ------
--#################------------- -------
---###############------------------------
----#############-------------------------
------###########-------------------------
-------########-------------------------
----------####-------------------------#
------------#----------------------###
-----------######------------#######
---------#########################
-------#######################
------######################
--####################
##############
Global CMT Convention Moment Tensor:
R T P
-1.48e+23 6.83e+22 3.56e+23
6.83e+22 3.54e+23 3.36e+23
3.56e+23 3.36e+23 -2.05e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220108081642/index.html
|
STK = 105
DIP = 50
RAKE = -15
MW = 5.11
HS = 44.0
The NDK file is 20220108081642.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2022/01/08 08:16:42:0 60.39 -140.53 37.8 5.2 Yukon, Canada
Stations used:
AK.BARN AK.BMR AK.CRQ AK.CYK AK.DIV AK.EYAK AK.FID AK.GLB
AK.GLI AK.GRNC AK.HARP AK.HIN AK.KAI AK.KIAG AK.KLU AK.L26K
AK.LOGN AK.M26K AK.M27K AK.MCAR AK.PIN AK.PNL AK.PS12
AK.PTPK AK.RAG AK.SAMH AK.TGL AK.VMT AK.VRDI AT.SKAG
AV.N25K CN.BRWY CN.BVCY CN.PLBC CN.WHY CN.YUK3
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 5.82e+23 dyne-cm
Mw = 5.11
Z = 44 km
Plane Strike Dip Rake
NP1 205 79 -139
NP2 105 50 -15
Principal Axes:
Axis Value Plunge Azimuth
T 5.82e+23 18 329
N 0.00e+00 48 218
P -5.82e+23 36 73
Moment Tensor: (dyne-cm)
Component Value
Mxx 3.54e+23
Mxy -3.36e+23
Mxz 6.83e+22
Myy -2.05e+23
Myz -3.56e+23
Mzz -1.48e+23
##############
##################----
#### #############--------
##### T ###########-----------
####### ##########--------------
####################----------------
####################------------------
####################----------- ------
###################------------ P ------
--#################------------- -------
---###############------------------------
----#############-------------------------
------###########-------------------------
-------########-------------------------
----------####-------------------------#
------------#----------------------###
-----------######------------#######
---------#########################
-------#######################
------######################
--####################
##############
Global CMT Convention Moment Tensor:
R T P
-1.48e+23 6.83e+22 3.56e+23
6.83e+22 3.54e+23 3.36e+23
3.56e+23 3.36e+23 -2.05e+23
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20220108081642/index.html
|
W-phase Moment Tensor (Mww) Moment 6.922e+16 N-m Magnitude 5.16 Mww Depth 30.5 km Percent DC 77% Half Duration 1.08 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 208° 73° -131° NP2 99° 44° -25° Principal Axes Axis Value Plunge Azimuth T 6.456e+16 N-m 17° 327° N 0.853e+16 N-m 39° 222° P -7.309e+16 N-m 46° 76° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 200 70 25 4.29 0.2218
WVFGRD96 2.0 215 55 45 4.45 0.2870
WVFGRD96 3.0 205 60 30 4.48 0.3011
WVFGRD96 4.0 200 80 25 4.49 0.3040
WVFGRD96 5.0 15 60 -20 4.53 0.3115
WVFGRD96 6.0 15 60 -15 4.55 0.3212
WVFGRD96 7.0 15 60 -20 4.57 0.3305
WVFGRD96 8.0 10 70 -30 4.62 0.3370
WVFGRD96 9.0 295 65 35 4.65 0.3479
WVFGRD96 10.0 295 65 35 4.67 0.3622
WVFGRD96 11.0 295 70 25 4.67 0.3749
WVFGRD96 12.0 295 70 25 4.69 0.3864
WVFGRD96 13.0 295 70 20 4.71 0.3968
WVFGRD96 14.0 110 70 20 4.72 0.4078
WVFGRD96 15.0 110 70 20 4.74 0.4211
WVFGRD96 16.0 110 70 20 4.75 0.4336
WVFGRD96 17.0 110 65 15 4.76 0.4464
WVFGRD96 18.0 110 65 15 4.78 0.4595
WVFGRD96 19.0 110 65 15 4.79 0.4719
WVFGRD96 20.0 110 65 15 4.81 0.4834
WVFGRD96 21.0 110 65 15 4.82 0.4950
WVFGRD96 22.0 105 65 10 4.84 0.5071
WVFGRD96 23.0 105 60 0 4.84 0.5192
WVFGRD96 24.0 105 60 -5 4.85 0.5324
WVFGRD96 25.0 105 60 -5 4.87 0.5463
WVFGRD96 26.0 105 60 -5 4.88 0.5608
WVFGRD96 27.0 105 60 -5 4.89 0.5741
WVFGRD96 28.0 105 60 -10 4.90 0.5886
WVFGRD96 29.0 105 60 -10 4.91 0.6012
WVFGRD96 30.0 105 60 -10 4.92 0.6133
WVFGRD96 31.0 105 55 -10 4.93 0.6236
WVFGRD96 32.0 105 55 -10 4.94 0.6356
WVFGRD96 33.0 105 55 -10 4.95 0.6452
WVFGRD96 34.0 105 55 -10 4.96 0.6535
WVFGRD96 35.0 105 55 -10 4.96 0.6598
WVFGRD96 36.0 105 55 -15 4.97 0.6653
WVFGRD96 37.0 105 55 -15 4.98 0.6688
WVFGRD96 38.0 105 55 -15 4.99 0.6725
WVFGRD96 39.0 105 55 -15 5.00 0.6736
WVFGRD96 40.0 105 45 -15 5.08 0.6747
WVFGRD96 41.0 105 50 -15 5.08 0.6781
WVFGRD96 42.0 105 50 -15 5.09 0.6826
WVFGRD96 43.0 105 50 -15 5.10 0.6837
WVFGRD96 44.0 105 50 -15 5.11 0.6846
WVFGRD96 45.0 105 50 -15 5.11 0.6839
WVFGRD96 46.0 105 50 -15 5.12 0.6824
WVFGRD96 47.0 105 50 -15 5.12 0.6805
WVFGRD96 48.0 105 50 -15 5.13 0.6767
WVFGRD96 49.0 105 50 -15 5.13 0.6738
WVFGRD96 50.0 105 50 -15 5.14 0.6693
WVFGRD96 51.0 105 50 -15 5.14 0.6657
WVFGRD96 52.0 105 50 -15 5.15 0.6604
WVFGRD96 53.0 105 50 -15 5.15 0.6554
WVFGRD96 54.0 105 50 -15 5.15 0.6504
WVFGRD96 55.0 105 50 -15 5.15 0.6445
WVFGRD96 56.0 105 50 -15 5.16 0.6393
WVFGRD96 57.0 110 50 -15 5.16 0.6339
WVFGRD96 58.0 110 50 -15 5.16 0.6296
WVFGRD96 59.0 110 50 -15 5.17 0.6242
The best solution is
WVFGRD96 44.0 105 50 -15 5.11 0.6846
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00