The ANSS event ID is se60377836 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/se60377836/executive.
2021/12/27 19:18:54 34.182 -80.720 3.1 3.3 S. Carolina
USGS/SLU Moment Tensor Solution ENS 2021/12/27 19:18:54:0 34.18 -80.72 3.1 3.3 S. Carolina Stations used: CO.BIRD CO.HAW CO.HODGE CO.PAULI N4.KMSC N4.V55A N4.W57A N4.W59A N4.X58A N4.Y57A Filtering commands used: cut o DIST/3.3 -10 o DIST/3.3 +20 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.40 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.24e+20 dyne-cm Mw = 3.13 Z = 1 km Plane Strike Dip Rake NP1 174 71 114 NP2 300 30 40 Principal Axes: Axis Value Plunge Azimuth T 6.24e+20 57 116 N 0.00e+00 23 346 P -6.24e+20 23 246 Moment Tensor: (dyne-cm) Component Value Mxx -5.35e+19 Mxy -2.70e+20 Mxz -3.33e+19 Myy -2.94e+20 Myz 4.59e+20 Mzz 3.47e+20 ####---------- ########-------------- ########--##---------------- ##---------#########---------- #-----------#############--------- -------------################------- --------------##################------ ---------------###################------ ---------------#####################---- ----------------######################---- ----------------######################---- ----------------########### #########--- -----------------########## T #########--- ---- ---------########## #########-- ---- P ---------#######################- --- ----------#####################- ---------------##################### ---------------################### -------------################# -------------############### -----------########### --------###### Global CMT Convention Moment Tensor: R T P 3.47e+20 -3.33e+19 -4.59e+20 -3.33e+19 -5.35e+19 2.70e+20 -4.59e+20 2.70e+20 -2.94e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211227191854/index.html |
STK = 300 DIP = 30 RAKE = 40 MW = 3.13 HS = 1.0
The NDK file is 20211227191854.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2021/12/27 19:18:54:0 34.18 -80.72 3.1 3.3 S. Carolina Stations used: CO.BIRD CO.HAW CO.HODGE CO.PAULI N4.KMSC N4.V55A N4.W57A N4.W59A N4.X58A N4.Y57A Filtering commands used: cut o DIST/3.3 -10 o DIST/3.3 +20 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.40 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 6.24e+20 dyne-cm Mw = 3.13 Z = 1 km Plane Strike Dip Rake NP1 174 71 114 NP2 300 30 40 Principal Axes: Axis Value Plunge Azimuth T 6.24e+20 57 116 N 0.00e+00 23 346 P -6.24e+20 23 246 Moment Tensor: (dyne-cm) Component Value Mxx -5.35e+19 Mxy -2.70e+20 Mxz -3.33e+19 Myy -2.94e+20 Myz 4.59e+20 Mzz 3.47e+20 ####---------- ########-------------- ########--##---------------- ##---------#########---------- #-----------#############--------- -------------################------- --------------##################------ ---------------###################------ ---------------#####################---- ----------------######################---- ----------------######################---- ----------------########### #########--- -----------------########## T #########--- ---- ---------########## #########-- ---- P ---------#######################- --- ----------#####################- ---------------##################### ---------------################### -------------################# -------------############### -----------########### --------###### Global CMT Convention Moment Tensor: R T P 3.47e+20 -3.33e+19 -4.59e+20 -3.33e+19 -5.35e+19 2.70e+20 -4.59e+20 2.70e+20 -2.94e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20211227191854/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -10 o DIST/3.3 +20 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.40 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 300 30 40 3.13 0.5257 WVFGRD96 2.0 330 40 55 3.09 0.5198 WVFGRD96 3.0 325 45 40 3.09 0.4970 WVFGRD96 4.0 305 50 -15 3.12 0.4658 WVFGRD96 5.0 295 50 -30 3.16 0.4353 WVFGRD96 6.0 285 45 -35 3.20 0.4125 WVFGRD96 7.0 330 65 35 3.28 0.3966 WVFGRD96 8.0 330 60 45 3.29 0.3806 WVFGRD96 9.0 335 55 45 3.34 0.3877 WVFGRD96 10.0 345 40 75 3.37 0.3892 WVFGRD96 11.0 345 40 75 3.40 0.3975 WVFGRD96 12.0 350 45 80 3.43 0.4016 WVFGRD96 13.0 155 30 65 3.45 0.4112 WVFGRD96 14.0 145 30 50 3.45 0.4274 WVFGRD96 15.0 145 35 55 3.43 0.4310 WVFGRD96 16.0 155 40 55 3.43 0.4642 WVFGRD96 17.0 160 45 65 3.41 0.4330 WVFGRD96 18.0 150 45 60 3.41 0.4306 WVFGRD96 19.0 35 40 -50 3.45 0.4458 WVFGRD96 20.0 40 40 -45 3.47 0.4182 WVFGRD96 21.0 165 60 65 3.46 0.4346 WVFGRD96 22.0 250 60 -70 3.48 0.4430 WVFGRD96 23.0 255 65 -60 3.48 0.4417 WVFGRD96 24.0 255 65 -60 3.48 0.4506 WVFGRD96 25.0 255 70 -55 3.50 0.4374 WVFGRD96 26.0 255 65 -55 3.49 0.4613 WVFGRD96 27.0 255 60 -60 3.47 0.4740 WVFGRD96 28.0 260 60 -50 3.46 0.4702 WVFGRD96 29.0 260 55 -45 3.46 0.4795
The best solution is
WVFGRD96 1.0 300 30 40 3.13 0.5257
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -10 o DIST/3.3 +20 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.40 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00