The ANSS event ID is ak02196xqxn5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02196xqxn5/executive.
2021/07/19 10:52:20 60.223 -151.823 69.9 4.3 Alaska
USGS/SLU Moment Tensor Solution
ENS 2021/07/19 10:52:20:0 60.22 -151.82 69.9 4.3 Alaska
Stations used:
AK.BRLK AK.CAST AK.CNP AK.CUT AK.FID AK.FIRE AK.GHO AK.HOM
AK.K20K AK.M20K AK.N18K AK.N19K AK.O18K AK.O19K AK.PPLA
AK.PWL AK.Q19K AK.RC01 AK.SAW AK.SKN AK.SLK AK.SWD AK.TRF
AV.ILS AV.RED AV.SPCP AV.STLK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 2.79e+22 dyne-cm
Mw = 4.23
Z = 70 km
Plane Strike Dip Rake
NP1 10 75 -25
NP2 107 66 -164
Principal Axes:
Axis Value Plunge Azimuth
T 2.79e+22 6 60
N 0.00e+00 61 161
P -2.79e+22 28 327
Moment Tensor: (dyne-cm)
Component Value
Mxx -8.16e+21
Mxy 2.19e+22
Mxz -8.21e+21
Myy 1.41e+22
Myz 8.91e+21
Mzz -5.89e+21
-----------###
---------------#######
-------------------#########
----- ------------##########
------- P ------------##########
-------- ------------########## T
------------------------########## #
-------------------------###############
#------------------------###############
####---------------------#################
######-------------------#################
########-----------------#################
############------------##################
###############--------#################
####################---################-
#####################-----------------
###################-----------------
##################----------------
###############---------------
#############---------------
#########-------------
####----------
Global CMT Convention Moment Tensor:
R T P
-5.89e+21 -8.21e+21 -8.91e+21
-8.21e+21 -8.16e+21 -2.19e+22
-8.91e+21 -2.19e+22 1.41e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210719105220/index.html
|
STK = 10
DIP = 75
RAKE = -25
MW = 4.23
HS = 70.0
The NDK file is 20210719105220.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 105 60 25 3.36 0.2296
WVFGRD96 4.0 275 75 -10 3.42 0.2641
WVFGRD96 6.0 100 70 10 3.49 0.2796
WVFGRD96 8.0 95 70 -10 3.57 0.2908
WVFGRD96 10.0 95 70 -10 3.61 0.2889
WVFGRD96 12.0 95 70 -5 3.64 0.2793
WVFGRD96 14.0 5 80 -10 3.68 0.2731
WVFGRD96 16.0 5 80 -10 3.71 0.2826
WVFGRD96 18.0 5 80 -10 3.74 0.2948
WVFGRD96 20.0 5 80 -15 3.77 0.3127
WVFGRD96 22.0 5 80 -15 3.80 0.3323
WVFGRD96 24.0 5 80 -10 3.83 0.3531
WVFGRD96 26.0 5 80 -15 3.85 0.3743
WVFGRD96 28.0 5 80 -15 3.87 0.3955
WVFGRD96 30.0 5 80 -10 3.89 0.4156
WVFGRD96 32.0 5 80 -10 3.90 0.4348
WVFGRD96 34.0 5 80 -10 3.92 0.4471
WVFGRD96 36.0 5 80 -15 3.94 0.4613
WVFGRD96 38.0 5 80 -15 3.97 0.4724
WVFGRD96 40.0 5 75 -20 4.04 0.4897
WVFGRD96 42.0 5 75 -20 4.06 0.4938
WVFGRD96 44.0 5 75 -20 4.08 0.5020
WVFGRD96 46.0 5 75 -20 4.10 0.5084
WVFGRD96 48.0 5 75 -20 4.12 0.5175
WVFGRD96 50.0 5 75 -20 4.13 0.5257
WVFGRD96 52.0 5 75 -20 4.14 0.5315
WVFGRD96 54.0 10 80 -20 4.16 0.5388
WVFGRD96 56.0 10 75 -20 4.18 0.5478
WVFGRD96 58.0 10 75 -20 4.19 0.5563
WVFGRD96 60.0 10 75 -20 4.20 0.5626
WVFGRD96 62.0 10 75 -20 4.20 0.5683
WVFGRD96 64.0 10 75 -20 4.21 0.5737
WVFGRD96 66.0 10 75 -25 4.22 0.5774
WVFGRD96 68.0 10 75 -25 4.23 0.5801
WVFGRD96 70.0 10 75 -25 4.23 0.5818
WVFGRD96 72.0 10 75 -25 4.24 0.5811
WVFGRD96 74.0 10 75 -25 4.24 0.5801
WVFGRD96 76.0 10 75 -25 4.25 0.5785
WVFGRD96 78.0 10 75 -25 4.25 0.5765
WVFGRD96 80.0 10 75 -25 4.25 0.5729
WVFGRD96 82.0 10 75 -25 4.26 0.5699
WVFGRD96 84.0 10 75 -25 4.26 0.5638
WVFGRD96 86.0 10 75 -25 4.26 0.5591
WVFGRD96 88.0 10 75 -25 4.27 0.5545
WVFGRD96 90.0 10 75 -25 4.27 0.5482
WVFGRD96 92.0 10 75 -25 4.27 0.5427
WVFGRD96 94.0 10 75 -25 4.27 0.5374
WVFGRD96 96.0 10 75 -25 4.27 0.5308
WVFGRD96 98.0 10 75 -25 4.28 0.5267
WVFGRD96 100.0 10 75 -25 4.28 0.5218
WVFGRD96 102.0 10 75 -25 4.28 0.5163
WVFGRD96 104.0 10 75 -25 4.28 0.5123
WVFGRD96 106.0 10 75 -25 4.29 0.5067
WVFGRD96 108.0 10 75 -25 4.29 0.5031
WVFGRD96 110.0 10 75 -25 4.29 0.4990
WVFGRD96 112.0 10 75 -25 4.29 0.4944
WVFGRD96 114.0 10 75 -25 4.30 0.4902
WVFGRD96 116.0 10 75 -25 4.30 0.4858
WVFGRD96 118.0 10 75 -25 4.30 0.4826
WVFGRD96 120.0 10 75 -25 4.30 0.4767
WVFGRD96 122.0 10 75 -25 4.30 0.4728
WVFGRD96 124.0 10 75 -25 4.31 0.4648
WVFGRD96 126.0 10 75 -25 4.31 0.4561
WVFGRD96 128.0 -5 70 -35 4.29 0.4409
WVFGRD96 130.0 -5 70 -35 4.29 0.4300
WVFGRD96 132.0 -5 70 -35 4.29 0.4174
WVFGRD96 134.0 355 70 -35 4.29 0.4025
WVFGRD96 136.0 350 65 -35 4.28 0.3633
WVFGRD96 138.0 -5 60 -30 4.27 0.3065
WVFGRD96 140.0 10 85 0 4.23 0.2572
WVFGRD96 142.0 15 85 55 4.22 0.2522
WVFGRD96 144.0 15 85 55 4.22 0.2491
WVFGRD96 146.0 15 80 65 4.22 0.2472
WVFGRD96 148.0 15 80 65 4.23 0.2461
The best solution is
WVFGRD96 70.0 10 75 -25 4.23 0.5818
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00