The ANSS event ID is ak02196xqxn5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02196xqxn5/executive.
2021/07/19 10:52:20 60.223 -151.823 69.9 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2021/07/19 10:52:20:0 60.22 -151.82 69.9 4.3 Alaska Stations used: AK.BRLK AK.CAST AK.CNP AK.CUT AK.FID AK.FIRE AK.GHO AK.HOM AK.K20K AK.M20K AK.N18K AK.N19K AK.O18K AK.O19K AK.PPLA AK.PWL AK.Q19K AK.RC01 AK.SAW AK.SKN AK.SLK AK.SWD AK.TRF AV.ILS AV.RED AV.SPCP AV.STLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.79e+22 dyne-cm Mw = 4.23 Z = 70 km Plane Strike Dip Rake NP1 10 75 -25 NP2 107 66 -164 Principal Axes: Axis Value Plunge Azimuth T 2.79e+22 6 60 N 0.00e+00 61 161 P -2.79e+22 28 327 Moment Tensor: (dyne-cm) Component Value Mxx -8.16e+21 Mxy 2.19e+22 Mxz -8.21e+21 Myy 1.41e+22 Myz 8.91e+21 Mzz -5.89e+21 -----------### ---------------####### -------------------######### ----- ------------########## ------- P ------------########## -------- ------------########## T ------------------------########## # -------------------------############### #------------------------############### ####---------------------################# ######-------------------################# ########-----------------################# ############------------################## ###############--------################# ####################---################- #####################----------------- ###################----------------- ##################---------------- ###############--------------- #############--------------- #########------------- ####---------- Global CMT Convention Moment Tensor: R T P -5.89e+21 -8.21e+21 -8.91e+21 -8.21e+21 -8.16e+21 -2.19e+22 -8.91e+21 -2.19e+22 1.41e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210719105220/index.html |
STK = 10 DIP = 75 RAKE = -25 MW = 4.23 HS = 70.0
The NDK file is 20210719105220.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 105 60 25 3.36 0.2296 WVFGRD96 4.0 275 75 -10 3.42 0.2641 WVFGRD96 6.0 100 70 10 3.49 0.2796 WVFGRD96 8.0 95 70 -10 3.57 0.2908 WVFGRD96 10.0 95 70 -10 3.61 0.2889 WVFGRD96 12.0 95 70 -5 3.64 0.2793 WVFGRD96 14.0 5 80 -10 3.68 0.2731 WVFGRD96 16.0 5 80 -10 3.71 0.2826 WVFGRD96 18.0 5 80 -10 3.74 0.2948 WVFGRD96 20.0 5 80 -15 3.77 0.3127 WVFGRD96 22.0 5 80 -15 3.80 0.3323 WVFGRD96 24.0 5 80 -10 3.83 0.3531 WVFGRD96 26.0 5 80 -15 3.85 0.3743 WVFGRD96 28.0 5 80 -15 3.87 0.3955 WVFGRD96 30.0 5 80 -10 3.89 0.4156 WVFGRD96 32.0 5 80 -10 3.90 0.4348 WVFGRD96 34.0 5 80 -10 3.92 0.4471 WVFGRD96 36.0 5 80 -15 3.94 0.4613 WVFGRD96 38.0 5 80 -15 3.97 0.4724 WVFGRD96 40.0 5 75 -20 4.04 0.4897 WVFGRD96 42.0 5 75 -20 4.06 0.4938 WVFGRD96 44.0 5 75 -20 4.08 0.5020 WVFGRD96 46.0 5 75 -20 4.10 0.5084 WVFGRD96 48.0 5 75 -20 4.12 0.5175 WVFGRD96 50.0 5 75 -20 4.13 0.5257 WVFGRD96 52.0 5 75 -20 4.14 0.5315 WVFGRD96 54.0 10 80 -20 4.16 0.5388 WVFGRD96 56.0 10 75 -20 4.18 0.5478 WVFGRD96 58.0 10 75 -20 4.19 0.5563 WVFGRD96 60.0 10 75 -20 4.20 0.5626 WVFGRD96 62.0 10 75 -20 4.20 0.5683 WVFGRD96 64.0 10 75 -20 4.21 0.5737 WVFGRD96 66.0 10 75 -25 4.22 0.5774 WVFGRD96 68.0 10 75 -25 4.23 0.5801 WVFGRD96 70.0 10 75 -25 4.23 0.5818 WVFGRD96 72.0 10 75 -25 4.24 0.5811 WVFGRD96 74.0 10 75 -25 4.24 0.5801 WVFGRD96 76.0 10 75 -25 4.25 0.5785 WVFGRD96 78.0 10 75 -25 4.25 0.5765 WVFGRD96 80.0 10 75 -25 4.25 0.5729 WVFGRD96 82.0 10 75 -25 4.26 0.5699 WVFGRD96 84.0 10 75 -25 4.26 0.5638 WVFGRD96 86.0 10 75 -25 4.26 0.5591 WVFGRD96 88.0 10 75 -25 4.27 0.5545 WVFGRD96 90.0 10 75 -25 4.27 0.5482 WVFGRD96 92.0 10 75 -25 4.27 0.5427 WVFGRD96 94.0 10 75 -25 4.27 0.5374 WVFGRD96 96.0 10 75 -25 4.27 0.5308 WVFGRD96 98.0 10 75 -25 4.28 0.5267 WVFGRD96 100.0 10 75 -25 4.28 0.5218 WVFGRD96 102.0 10 75 -25 4.28 0.5163 WVFGRD96 104.0 10 75 -25 4.28 0.5123 WVFGRD96 106.0 10 75 -25 4.29 0.5067 WVFGRD96 108.0 10 75 -25 4.29 0.5031 WVFGRD96 110.0 10 75 -25 4.29 0.4990 WVFGRD96 112.0 10 75 -25 4.29 0.4944 WVFGRD96 114.0 10 75 -25 4.30 0.4902 WVFGRD96 116.0 10 75 -25 4.30 0.4858 WVFGRD96 118.0 10 75 -25 4.30 0.4826 WVFGRD96 120.0 10 75 -25 4.30 0.4767 WVFGRD96 122.0 10 75 -25 4.30 0.4728 WVFGRD96 124.0 10 75 -25 4.31 0.4648 WVFGRD96 126.0 10 75 -25 4.31 0.4561 WVFGRD96 128.0 -5 70 -35 4.29 0.4409 WVFGRD96 130.0 -5 70 -35 4.29 0.4300 WVFGRD96 132.0 -5 70 -35 4.29 0.4174 WVFGRD96 134.0 355 70 -35 4.29 0.4025 WVFGRD96 136.0 350 65 -35 4.28 0.3633 WVFGRD96 138.0 -5 60 -30 4.27 0.3065 WVFGRD96 140.0 10 85 0 4.23 0.2572 WVFGRD96 142.0 15 85 55 4.22 0.2522 WVFGRD96 144.0 15 85 55 4.22 0.2491 WVFGRD96 146.0 15 80 65 4.22 0.2472 WVFGRD96 148.0 15 80 65 4.23 0.2461
The best solution is
WVFGRD96 70.0 10 75 -25 4.23 0.5818
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00