Location

Location ANSS

The ANSS event ID is ak0218ot0chb and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0218ot0chb/executive.

2021/07/08 14:17:19 68.607 -148.587 16.4 4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/07/08 14:17:19:0  68.61 -148.59  16.4 4.0 Alaska
 
 Stations used:
   AK.C26K AK.C27K AK.CCB AK.COLD AK.D24K AK.D25K AK.E24K 
   AK.E27K AK.F20K AK.F21K AK.G23K AK.G24K AK.G27K AK.H21K 
   AK.H22K AK.H24K AK.I21K AK.I23K AK.MLY AK.POKR AK.PPD 
   AK.TOLK IM.IL31 IU.COLA TA.F28M 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 8.61e+21 dyne-cm
  Mw = 3.89 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      225    90    15
   NP2      135    75   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.61e+21     11      91
    N   0.00e+00     75     225
    P  -8.61e+21     11     359

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -8.32e+21
       Mxy     1.06e+15
       Mxz    -1.58e+21
       Myy     8.32e+21
       Myz     1.58e+21
       Mzz    -1.95e+14
                                                     
                                                     
                                                     
                                                     
                     ----- P ------                  
                 ---------   ----------              
              ----------------------------           
             #----------------------------#          
           ###--------------------------#####        
          #####-----------------------########       
         #######--------------------###########      
        ##########----------------##############     
        ###########--------------###############     
       #############-----------##################    
       ###############-------################   #    
       #################---################## T #    
       ######################################   #    
        ###############----#####################     
        ##############-------###################     
         ###########------------###############      
          ########----------------############       
           #####---------------------########        
             #--------------------------###          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.95e+14  -1.58e+21  -1.58e+21 
 -1.58e+21  -8.32e+21  -1.06e+15 
 -1.58e+21  -1.06e+15   8.32e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210708141719/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 225
      DIP = 90
     RAKE = 15
       MW = 3.89
       HS = 8.0

The NDK file is 20210708141719.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    45    80   -15   3.61 0.3812
WVFGRD96    2.0    45    80   -20   3.72 0.4919
WVFGRD96    3.0   225    90    15   3.76 0.5522
WVFGRD96    4.0   225    85    10   3.79 0.5959
WVFGRD96    5.0   225    85    10   3.82 0.6218
WVFGRD96    6.0   225    85    10   3.84 0.6375
WVFGRD96    7.0   225    90    10   3.86 0.6476
WVFGRD96    8.0   225    90    15   3.89 0.6578
WVFGRD96    9.0    45    80   -15   3.90 0.6550
WVFGRD96   10.0    45    80   -10   3.91 0.6433
WVFGRD96   11.0   225    75   -20   3.92 0.6385
WVFGRD96   12.0   225    75   -20   3.93 0.6424
WVFGRD96   13.0   225    75   -20   3.94 0.6436
WVFGRD96   14.0   225    75   -20   3.95 0.6425
WVFGRD96   15.0   225    75   -20   3.95 0.6391
WVFGRD96   16.0   225    75   -20   3.96 0.6334
WVFGRD96   17.0   225    75   -20   3.96 0.6258
WVFGRD96   18.0   225    75   -15   3.97 0.6177
WVFGRD96   19.0   225    75   -15   3.97 0.6084
WVFGRD96   20.0   225    75   -15   3.98 0.5978
WVFGRD96   21.0   225    70   -10   3.98 0.5881
WVFGRD96   22.0   225    70   -10   3.98 0.5796
WVFGRD96   23.0   225    70   -10   3.99 0.5708
WVFGRD96   24.0   225    70   -10   3.99 0.5611
WVFGRD96   25.0   230    80    10   3.98 0.5551
WVFGRD96   26.0   230    80    10   3.99 0.5516
WVFGRD96   27.0   230    80    10   4.00 0.5482
WVFGRD96   28.0   230    80    10   4.01 0.5438
WVFGRD96   29.0   230    80    10   4.02 0.5395

The best solution is

WVFGRD96    8.0   225    90    15   3.89 0.6578

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 12:12:35 AM CDT 2024