The ANSS event ID is nm60344372 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nm60344372/executive.
2021/06/17 19:18:02 39.831 -87.287 6.3 3.82 Indiana
USGS/SLU Moment Tensor Solution ENS 2021/06/17 19:18:02:0 39.83 -87.29 6.3 3.8 Indiana Stations used: IU.CCM IU.WCI IU.WVT N4.J47A N4.K43A N4.L40A N4.L42A N4.M44A N4.M50A N4.N41A N4.N49A N4.N51A N4.O49A N4.P40B N4.P43A N4.P48A N4.Q44B N4.R49A N4.R50A N4.S44A N4.S51A N4.SFIN N4.T45B N4.T47A N4.T50A N4.U49A NM.BLO NM.CGM3 NM.CLTN NM.FFIL NM.FVM NM.HICK NM.OLIL NM.PARM NM.SIUC NM.SLM NM.USIN NM.UTMT NW.L44A OH.P51A US.AAM US.ACSO US.HDIL US.JFWS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.31e+21 dyne-cm Mw = 3.80 Z = 7 km Plane Strike Dip Rake NP1 305 85 15 NP2 214 75 175 Principal Axes: Axis Value Plunge Azimuth T 6.31e+21 14 170 N 0.00e+00 74 323 P -6.31e+21 7 78 Moment Tensor: (dyne-cm) Component Value Mxx 5.51e+21 Mxy -2.21e+21 Mxz -1.62e+21 Myy -5.80e+21 Myz -4.87e+20 Mzz 2.84e+20 ############## ###################### #######################----- ######################-------- ######################------------ ----#################--------------- ---------###########------------------ -------------#######----------------- ---------------####------------------ P ------------------#------------------- - -----------------#####-------------------- ----------------#########----------------- ---------------############--------------- -------------###############------------ ------------###################--------- ----------######################------ --------#########################--- -------########################### ----########################## ---############# ######### ############# T ###### ######### ## Global CMT Convention Moment Tensor: R T P 2.84e+20 -1.62e+21 4.87e+20 -1.62e+21 5.51e+21 2.21e+21 4.87e+20 2.21e+21 -5.80e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210617191802/index.html |
STK = 305 DIP = 85 RAKE = 15 MW = 3.80 HS = 7.0
The NDK file is 20210617191802.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2021/06/17 19:18:02:0 39.83 -87.29 6.3 3.8 Indiana Stations used: IU.CCM IU.WCI IU.WVT N4.J47A N4.K43A N4.L40A N4.L42A N4.M44A N4.M50A N4.N41A N4.N49A N4.N51A N4.O49A N4.P40B N4.P43A N4.P48A N4.Q44B N4.R49A N4.R50A N4.S44A N4.S51A N4.SFIN N4.T45B N4.T47A N4.T50A N4.U49A NM.BLO NM.CGM3 NM.CLTN NM.FFIL NM.FVM NM.HICK NM.OLIL NM.PARM NM.SIUC NM.SLM NM.USIN NM.UTMT NW.L44A OH.P51A US.AAM US.ACSO US.HDIL US.JFWS Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.31e+21 dyne-cm Mw = 3.80 Z = 7 km Plane Strike Dip Rake NP1 305 85 15 NP2 214 75 175 Principal Axes: Axis Value Plunge Azimuth T 6.31e+21 14 170 N 0.00e+00 74 323 P -6.31e+21 7 78 Moment Tensor: (dyne-cm) Component Value Mxx 5.51e+21 Mxy -2.21e+21 Mxz -1.62e+21 Myy -5.80e+21 Myz -4.87e+20 Mzz 2.84e+20 ############## ###################### #######################----- ######################-------- ######################------------ ----#################--------------- ---------###########------------------ -------------#######----------------- ---------------####------------------ P ------------------#------------------- - -----------------#####-------------------- ----------------#########----------------- ---------------############--------------- -------------###############------------ ------------###################--------- ----------######################------ --------#########################--- -------########################### ----########################## ---############# ######### ############# T ###### ######### ## Global CMT Convention Moment Tensor: R T P 2.84e+20 -1.62e+21 4.87e+20 -1.62e+21 5.51e+21 2.21e+21 4.87e+20 2.21e+21 -5.80e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210617191802/index.html |
Regional Moment Tensor (Mwr) Moment 6.672e+14 N-m Magnitude 3.82 Mwr Depth 4.0 km Percent DC 73% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 300° 88° 19° NP2 210° 71° 177° Principal Axes Axis Value Plunge Azimuth T 7.102e+14 N-m 15° 167° N -0.966e+14 N-m 71° 307° P -6.137e+14 N-m 12° 73° |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 305 80 25 3.72 0.5176 WVFGRD96 2.0 300 80 -15 3.73 0.5543 WVFGRD96 3.0 305 85 10 3.75 0.5714 WVFGRD96 4.0 125 90 -15 3.77 0.5780 WVFGRD96 5.0 125 90 -15 3.78 0.5819 WVFGRD96 6.0 125 90 -15 3.79 0.5836 WVFGRD96 7.0 305 85 15 3.80 0.5866 WVFGRD96 8.0 125 80 10 3.82 0.5795 WVFGRD96 9.0 125 85 15 3.83 0.5787 WVFGRD96 10.0 125 85 15 3.84 0.5739 WVFGRD96 11.0 125 85 15 3.85 0.5657 WVFGRD96 12.0 125 85 15 3.86 0.5539 WVFGRD96 13.0 125 85 15 3.87 0.5389 WVFGRD96 14.0 125 85 10 3.88 0.5215 WVFGRD96 15.0 125 85 10 3.88 0.5022 WVFGRD96 16.0 125 85 10 3.89 0.4815 WVFGRD96 17.0 125 80 10 3.89 0.4600 WVFGRD96 18.0 125 80 10 3.90 0.4374 WVFGRD96 19.0 125 80 10 3.90 0.4148 WVFGRD96 20.0 305 75 15 3.90 0.3963 WVFGRD96 21.0 305 75 15 3.90 0.3787 WVFGRD96 22.0 310 70 20 3.90 0.3632 WVFGRD96 23.0 310 70 20 3.91 0.3499 WVFGRD96 24.0 310 70 20 3.91 0.3375 WVFGRD96 25.0 310 70 20 3.91 0.3270 WVFGRD96 26.0 310 70 20 3.91 0.3170 WVFGRD96 27.0 35 75 10 3.92 0.3206 WVFGRD96 28.0 35 75 10 3.93 0.3231 WVFGRD96 29.0 35 75 5 3.94 0.3247
The best solution is
WVFGRD96 7.0 305 85 15 3.80 0.5866
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00