Location

Location ANSS

The ANSS event ID is ak0215dsbmgn and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0215dsbmgn/executive.

2021/04/27 17:54:36 61.342 -149.980 43.8 4.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/04/27 17:54:36:0  61.34 -149.98  43.8 4.8 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.CUT AK.DHY AK.EYAK AK.FIRE AK.GHO AK.GLI 
   AK.HOM AK.MCK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN 
   AK.SLK AK.SSN AT.PMR AV.ILS AV.RED AV.SPCP TA.M22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.32e+23 dyne-cm
  Mw = 4.68 
  Z  = 49 km
  Plane   Strike  Dip  Rake
   NP1      175    50   -70
   NP2      325    44   -112
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.32e+23      3     251
    N   0.00e+00     15     342
    P  -1.32e+23     74     150

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.92e+21
       Mxy     4.46e+22
       Mxz     2.70e+22
       Myy     1.15e+23
       Myz    -2.40e+22
       Mzz    -1.22e+23
                                                     
                                                     
                                                     
                                                     
                     ----##########                  
                 ------################              
              ########----################           
             ########---------#############          
           #########------------#############        
          #########---------------############       
         ##########-----------------###########      
        ##########-------------------###########     
        ##########---------------------#########     
       ###########----------------------#########    
       ###########----------------------#########    
       ###########----------   ----------########    
       ###########---------- P -----------#######    
          #########---------   -----------######     
        T #########-----------------------######     
          ##########----------------------#####      
          ##########----------------------####       
           ##########---------------------###        
             #########-------------------##          
              ##########----------------##           
                 ########--------------              
                     #######-------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.22e+23   2.70e+22   2.40e+22 
  2.70e+22   6.92e+21  -4.46e+22 
  2.40e+22  -4.46e+22   1.15e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210427175436/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 175
      DIP = 50
     RAKE = -70
       MW = 4.68
       HS = 49.0

The NDK file is 20210427175436.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2021/04/27 17:54:36:0  61.34 -149.98  43.8 4.8 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.CUT AK.DHY AK.EYAK AK.FIRE AK.GHO AK.GLI 
   AK.HOM AK.MCK AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN 
   AK.SLK AK.SSN AT.PMR AV.ILS AV.RED AV.SPCP TA.M22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.32e+23 dyne-cm
  Mw = 4.68 
  Z  = 49 km
  Plane   Strike  Dip  Rake
   NP1      175    50   -70
   NP2      325    44   -112
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.32e+23      3     251
    N   0.00e+00     15     342
    P  -1.32e+23     74     150

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.92e+21
       Mxy     4.46e+22
       Mxz     2.70e+22
       Myy     1.15e+23
       Myz    -2.40e+22
       Mzz    -1.22e+23
                                                     
                                                     
                                                     
                                                     
                     ----##########                  
                 ------################              
              ########----################           
             ########---------#############          
           #########------------#############        
          #########---------------############       
         ##########-----------------###########      
        ##########-------------------###########     
        ##########---------------------#########     
       ###########----------------------#########    
       ###########----------------------#########    
       ###########----------   ----------########    
       ###########---------- P -----------#######    
          #########---------   -----------######     
        T #########-----------------------######     
          ##########----------------------#####      
          ##########----------------------####       
           ##########---------------------###        
             #########-------------------##          
              ##########----------------##           
                 ########--------------              
                     #######-------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.22e+23   2.70e+22   2.40e+22 
  2.70e+22   6.92e+21  -4.46e+22 
  2.40e+22  -4.46e+22   1.15e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210427175436/index.html
	
W-phase Moment Tensor (Mww)
Moment 1.515e+16 N-m
Magnitude 4.72 Mww
Depth 45.5 km
Percent DC 70%
Half Duration 0.59 s
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 337  41  -107 
NP2 179  51  -76 

Principal Axes
Axis Value      Plunge Azimuth
T  1.379e+16 N-m   5   259
N  0.241e+16 N-m   11  350
P -1.621e+16 N-m   78  143

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   175    35   110   3.78 0.1485
WVFGRD96    2.0   280    55   -85   3.96 0.2156
WVFGRD96    3.0   285    55   -80   4.02 0.2440
WVFGRD96    4.0   315    75   -50   3.99 0.2592
WVFGRD96    5.0   315    80    65   4.04 0.2924
WVFGRD96    6.0   275    90    60   4.06 0.3213
WVFGRD96    7.0   275    90    60   4.07 0.3427
WVFGRD96    8.0   270    90    60   4.15 0.3574
WVFGRD96    9.0    90    85   -60   4.17 0.3718
WVFGRD96   10.0   315    80    60   4.18 0.3819
WVFGRD96   11.0   315    80    60   4.20 0.3898
WVFGRD96   12.0   320    75    60   4.22 0.3958
WVFGRD96   13.0   320    75    60   4.23 0.3990
WVFGRD96   14.0   320    75    60   4.25 0.4000
WVFGRD96   15.0   320    80    55   4.26 0.3998
WVFGRD96   16.0   320    80    55   4.27 0.4005
WVFGRD96   17.0   185    55    35   4.28 0.4010
WVFGRD96   18.0   185    50    30   4.29 0.4018
WVFGRD96   19.0   185    50    30   4.30 0.4015
WVFGRD96   20.0   185    50    30   4.31 0.4004
WVFGRD96   21.0   190    45    35   4.33 0.3989
WVFGRD96   22.0   190    45    35   4.34 0.3955
WVFGRD96   23.0   190    45    35   4.35 0.3928
WVFGRD96   24.0   230    40    30   4.36 0.3907
WVFGRD96   25.0   230    35    30   4.37 0.3903
WVFGRD96   26.0   230    35    30   4.38 0.3909
WVFGRD96   27.0   230    35    30   4.39 0.3899
WVFGRD96   28.0   230    35    30   4.39 0.3882
WVFGRD96   29.0   230    35    30   4.40 0.3853
WVFGRD96   30.0   225    40    30   4.41 0.3836
WVFGRD96   31.0   185    55   -65   4.43 0.4087
WVFGRD96   32.0   185    55   -65   4.45 0.4436
WVFGRD96   33.0   185    55   -65   4.46 0.4744
WVFGRD96   34.0   185    55   -65   4.47 0.5047
WVFGRD96   35.0   185    55   -65   4.48 0.5284
WVFGRD96   36.0   180    50   -65   4.49 0.5478
WVFGRD96   37.0   185    55   -65   4.50 0.5639
WVFGRD96   38.0   185    55   -65   4.51 0.5778
WVFGRD96   39.0   185    55   -60   4.52 0.5928
WVFGRD96   40.0   180    50   -70   4.60 0.5845
WVFGRD96   41.0   180    50   -70   4.62 0.5954
WVFGRD96   42.0   180    50   -70   4.63 0.6069
WVFGRD96   43.0   180    50   -70   4.64 0.6152
WVFGRD96   44.0   180    50   -70   4.65 0.6210
WVFGRD96   45.0   175    50   -70   4.66 0.6267
WVFGRD96   46.0   175    50   -70   4.67 0.6296
WVFGRD96   47.0   175    50   -75   4.67 0.6307
WVFGRD96   48.0   175    50   -70   4.68 0.6307
WVFGRD96   49.0   175    50   -70   4.68 0.6318
WVFGRD96   50.0   175    50   -75   4.69 0.6293
WVFGRD96   51.0   175    50   -70   4.69 0.6272
WVFGRD96   52.0   175    50   -75   4.69 0.6244
WVFGRD96   53.0   180    55   -65   4.70 0.6217
WVFGRD96   54.0   180    55   -65   4.70 0.6175
WVFGRD96   55.0   180    55   -65   4.70 0.6136
WVFGRD96   56.0   180    55   -65   4.70 0.6101
WVFGRD96   57.0   180    55   -65   4.71 0.6043
WVFGRD96   58.0   180    55   -65   4.71 0.5986
WVFGRD96   59.0   180    55   -65   4.71 0.5940

The best solution is

WVFGRD96   49.0   175    50   -70   4.68 0.6318

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Wed Apr 24 10:22:42 PM CDT 2024