Location

Location ANSS

The ANSS event ID is ak0212o88mqd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0212o88mqd/executive.

2021/02/27 18:59:25 61.319 -149.933 46.0 5.3 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/02/27 18:59:25:0  61.32 -149.93  46.0 5.3 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.BRLK AK.CAST AK.CNP AK.CUT AK.DHY AK.GHO 
   AK.GLI AK.HOM AK.KNK AK.L20K AK.L22K AK.M20K AK.P23K AK.PAX 
   AK.PPLA AK.RAG AK.SAW AK.SCM AK.SKN AK.SLK AT.PMR AV.ILS 
   AV.RED AV.SPCP TA.O22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 9.77e+23 dyne-cm
  Mw = 5.26 
  Z  = 48 km
  Plane   Strike  Dip  Rake
   NP1      190    60   -75
   NP2      342    33   -114
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.77e+23     14     269
    N   0.00e+00     13       2
    P  -9.77e+23     71     134

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.03e+22
       Mxy     6.60e+22
       Mxz     2.06e+23
       Myy     8.68e+23
       Myz    -4.43e+23
       Mzz    -8.17e+23
                                                     
                                                     
                                                     
                                                     
                     ####-----#####                  
                 ###########--#########              
              ############-------#########           
             ############----------########          
           #############-------------########        
          #############---------------########       
         #############------------------#######      
        ##############------------------########     
        #############--------------------#######     
       ##############---------------------#######    
       #   #########----------------------#######    
       # T #########----------   ---------#######    
       #   #########---------- P ---------#######    
        ############----------   ---------######     
        ############----------------------######     
         ###########----------------------#####      
          ##########---------------------#####       
           ##########--------------------####        
             ########-------------------###          
              ########----------------####           
                 ######--------------##              
                     ###-----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -8.17e+23   2.06e+23   4.43e+23 
  2.06e+23  -5.03e+22  -6.60e+22 
  4.43e+23  -6.60e+22   8.68e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210227185925/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 190
      DIP = 60
     RAKE = -75
       MW = 5.26
       HS = 48.0

The NDK file is 20210227185925.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2021/02/27 18:59:25:0  61.32 -149.93  46.0 5.3 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.BRLK AK.CAST AK.CNP AK.CUT AK.DHY AK.GHO 
   AK.GLI AK.HOM AK.KNK AK.L20K AK.L22K AK.M20K AK.P23K AK.PAX 
   AK.PPLA AK.RAG AK.SAW AK.SCM AK.SKN AK.SLK AT.PMR AV.ILS 
   AV.RED AV.SPCP TA.O22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 9.77e+23 dyne-cm
  Mw = 5.26 
  Z  = 48 km
  Plane   Strike  Dip  Rake
   NP1      190    60   -75
   NP2      342    33   -114
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.77e+23     14     269
    N   0.00e+00     13       2
    P  -9.77e+23     71     134

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.03e+22
       Mxy     6.60e+22
       Mxz     2.06e+23
       Myy     8.68e+23
       Myz    -4.43e+23
       Mzz    -8.17e+23
                                                     
                                                     
                                                     
                                                     
                     ####-----#####                  
                 ###########--#########              
              ############-------#########           
             ############----------########          
           #############-------------########        
          #############---------------########       
         #############------------------#######      
        ##############------------------########     
        #############--------------------#######     
       ##############---------------------#######    
       #   #########----------------------#######    
       # T #########----------   ---------#######    
       #   #########---------- P ---------#######    
        ############----------   ---------######     
        ############----------------------######     
         ###########----------------------#####      
          ##########---------------------#####       
           ##########--------------------####        
             ########-------------------###          
              ########----------------####           
                 ######--------------##              
                     ###-----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -8.17e+23   2.06e+23   4.43e+23 
  2.06e+23  -5.03e+22  -6.60e+22 
  4.43e+23  -6.60e+22   8.68e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210227185925/index.html
	
W-phase Moment Tensor (Mww)
Moment 1.228e+17 N-m
Magnitude 5.33 Mww
Depth 45.5 km
Percent DC 99%
Half Duration 1.11 s
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 181 56 -91
NP2 4 34 -88

Principal Axes
Axis Value Plunge Azimuth
T 1.226e+17 N-m 11 272
N 0.006e+17 N-m 1 182
P -1.231e+17 N-m 79 86

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0     0    40    90   4.54 0.2732
WVFGRD96    4.0   155    50    60   4.59 0.2199
WVFGRD96    6.0   160    85    55   4.57 0.2319
WVFGRD96    8.0   165    80    65   4.65 0.2640
WVFGRD96   10.0   260    40    15   4.68 0.2891
WVFGRD96   12.0   260    45    20   4.72 0.3063
WVFGRD96   14.0   260    45    20   4.74 0.3183
WVFGRD96   16.0   250    45    25   4.76 0.3248
WVFGRD96   18.0   235    40   -25   4.78 0.3324
WVFGRD96   20.0   230    40   -30   4.80 0.3431
WVFGRD96   22.0    35    55   -50   4.84 0.3549
WVFGRD96   24.0    35    55   -50   4.87 0.3734
WVFGRD96   26.0    35    55   -45   4.89 0.3914
WVFGRD96   28.0   210    50   -50   4.92 0.4168
WVFGRD96   30.0   205    50   -55   4.95 0.4549
WVFGRD96   32.0   200    50   -60   4.98 0.4944
WVFGRD96   34.0   200    55   -55   5.01 0.5270
WVFGRD96   36.0   195    55   -60   5.03 0.5509
WVFGRD96   38.0   200    60   -55   5.06 0.5711
WVFGRD96   40.0   195    60   -65   5.17 0.5931
WVFGRD96   42.0   195    60   -65   5.20 0.6279
WVFGRD96   44.0   195    60   -70   5.23 0.6514
WVFGRD96   46.0   195    60   -70   5.25 0.6662
WVFGRD96   48.0   190    60   -75   5.26 0.6715
WVFGRD96   50.0   190    60   -80   5.28 0.6704
WVFGRD96   52.0   185    60   -80   5.28 0.6631
WVFGRD96   54.0    -5    30   -95   5.29 0.6486
WVFGRD96   56.0   180    60   -90   5.29 0.6312
WVFGRD96   58.0     0    30   -90   5.30 0.6113
WVFGRD96   60.0     0    30   -90   5.29 0.5893
WVFGRD96   62.0     0    30   -85   5.29 0.5673
WVFGRD96   64.0     5    30   -80   5.29 0.5453
WVFGRD96   66.0     5    30   -80   5.29 0.5245
WVFGRD96   68.0    20    35   -60   5.29 0.5043
WVFGRD96   70.0    30    40   -45   5.30 0.4905
WVFGRD96   72.0   200    75   -50   5.30 0.4845
WVFGRD96   74.0   200    75   -50   5.30 0.4756
WVFGRD96   76.0   200    75   -50   5.30 0.4663
WVFGRD96   78.0   205    80   -45   5.30 0.4583
WVFGRD96   80.0   200    75   -50   5.30 0.4509
WVFGRD96   82.0   205    80   -45   5.31 0.4443
WVFGRD96   84.0   205    80   -50   5.31 0.4383
WVFGRD96   86.0   205    80   -50   5.31 0.4325
WVFGRD96   88.0   205    75   -45   5.29 0.4269
WVFGRD96   90.0   205    75   -45   5.29 0.4222
WVFGRD96   92.0   205    75   -45   5.29 0.4169
WVFGRD96   94.0   205    75   -45   5.29 0.4118
WVFGRD96   96.0   205    75   -45   5.29 0.4074
WVFGRD96   98.0   205    75   -45   5.29 0.4023

The best solution is

WVFGRD96   48.0   190    60   -75   5.26 0.6715

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Wed Apr 24 09:31:48 PM CDT 2024