The ANSS event ID is ak020ec6yfqa and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak020ec6yfqa/executive.
2020/11/07 12:23:11 61.520 -149.914 41.5 5.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2020/11/07 12:23:11:0 61.52 -149.91 41.5 5.1 Alaska Stations used: AK.BMR AK.CAST AK.CCB AK.CNP AK.CRQ AK.DHY AK.DOT AK.EYAK AK.FID AK.FIRE AK.GHO AK.GLI AK.HIN AK.I23K AK.J20K AK.J25K AK.KNK AK.L20K AK.M20K AK.M26K AK.MCAR AK.MLY AK.N18K AK.N19K AK.O19K AK.P23K AK.PAX AK.POKR AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD AK.TGL AK.TRF AK.VRDI AT.PMR AV.ILSW AV.RED AV.SPU AV.STLK IM.IL31 TA.M22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.72e+23 dyne-cm Mw = 4.89 Z = 51 km Plane Strike Dip Rake NP1 181 65 -85 NP2 350 25 -100 Principal Axes: Axis Value Plunge Azimuth T 2.72e+23 20 268 N 0.00e+00 4 359 P -2.72e+23 69 100 Moment Tensor: (dyne-cm) Component Value Mxx -6.40e+20 Mxy 1.63e+22 Mxz 1.23e+22 Myy 2.06e+23 Myz -1.77e+23 Mzz -2.05e+23 ######---##### #########--------##### ###########-----------###### ###########--------------##### #############----------------##### #############------------------##### ##############-------------------##### ##############---------------------##### ##############---------------------##### ###############----------------------##### ### #########---------- ---------##### ### T #########---------- P ---------##### ### #########---------- ---------##### ##############----------------------#### ##############---------------------##### #############---------------------#### #############-------------------#### ############------------------#### ###########----------------### ###########-------------#### ########-----------### ######-------# Global CMT Convention Moment Tensor: R T P -2.05e+23 1.23e+22 1.77e+23 1.23e+22 -6.40e+20 -1.63e+22 1.77e+23 -1.63e+22 2.06e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201107122311/index.html |
STK = -10 DIP = 25 RAKE = -100 MW = 4.89 HS = 51.0
The NDK file is 20201107122311.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2020/11/07 12:23:11:0 61.52 -149.91 41.5 5.1 Alaska Stations used: AK.BMR AK.CAST AK.CCB AK.CNP AK.CRQ AK.DHY AK.DOT AK.EYAK AK.FID AK.FIRE AK.GHO AK.GLI AK.HIN AK.I23K AK.J20K AK.J25K AK.KNK AK.L20K AK.M20K AK.M26K AK.MCAR AK.MLY AK.N18K AK.N19K AK.O19K AK.P23K AK.PAX AK.POKR AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD AK.TGL AK.TRF AK.VRDI AT.PMR AV.ILSW AV.RED AV.SPU AV.STLK IM.IL31 TA.M22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.72e+23 dyne-cm Mw = 4.89 Z = 51 km Plane Strike Dip Rake NP1 181 65 -85 NP2 350 25 -100 Principal Axes: Axis Value Plunge Azimuth T 2.72e+23 20 268 N 0.00e+00 4 359 P -2.72e+23 69 100 Moment Tensor: (dyne-cm) Component Value Mxx -6.40e+20 Mxy 1.63e+22 Mxz 1.23e+22 Myy 2.06e+23 Myz -1.77e+23 Mzz -2.05e+23 ######---##### #########--------##### ###########-----------###### ###########--------------##### #############----------------##### #############------------------##### ##############-------------------##### ##############---------------------##### ##############---------------------##### ###############----------------------##### ### #########---------- ---------##### ### T #########---------- P ---------##### ### #########---------- ---------##### ##############----------------------#### ##############---------------------##### #############---------------------#### #############-------------------#### ############------------------#### ###########----------------### ###########-------------#### ########-----------### ######-------# Global CMT Convention Moment Tensor: R T P -2.05e+23 1.23e+22 1.77e+23 1.23e+22 -6.40e+20 -1.63e+22 1.77e+23 -1.63e+22 2.06e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201107122311/index.html |
W-phase Moment Tensor (Mww) Moment 2.992e+16 N-m Magnitude 4.92 Mww Depth 50.5 km Percent DC 80% Half Duration 0.74 s Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 351 27 -98 NP2 179 63 -86 Principal Axes Axis Value Plunge Azimuth T 2.824e+16 N-m 18 266 N 0.312e+16 N-m 4 357 P -3.136e+16 N-m 72 98 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 0 45 90 3.98 0.1542 WVFGRD96 2.0 0 45 90 4.14 0.2095 WVFGRD96 3.0 180 50 90 4.20 0.1920 WVFGRD96 4.0 155 75 65 4.18 0.1859 WVFGRD96 5.0 130 80 -50 4.20 0.2110 WVFGRD96 6.0 130 80 -50 4.22 0.2343 WVFGRD96 7.0 130 80 -45 4.25 0.2534 WVFGRD96 8.0 130 80 -55 4.32 0.2637 WVFGRD96 9.0 130 80 -50 4.34 0.2777 WVFGRD96 10.0 125 75 -50 4.36 0.2886 WVFGRD96 11.0 125 75 -50 4.38 0.2969 WVFGRD96 12.0 125 75 -50 4.39 0.3031 WVFGRD96 13.0 320 80 55 4.39 0.3094 WVFGRD96 14.0 120 25 70 4.41 0.3182 WVFGRD96 15.0 115 30 65 4.43 0.3272 WVFGRD96 16.0 115 30 65 4.45 0.3352 WVFGRD96 17.0 105 30 55 4.46 0.3418 WVFGRD96 18.0 100 30 45 4.47 0.3487 WVFGRD96 19.0 100 30 45 4.48 0.3550 WVFGRD96 20.0 100 30 45 4.50 0.3598 WVFGRD96 21.0 105 25 50 4.52 0.3664 WVFGRD96 22.0 105 25 50 4.53 0.3714 WVFGRD96 23.0 105 25 45 4.54 0.3753 WVFGRD96 24.0 110 20 50 4.55 0.3788 WVFGRD96 25.0 110 20 50 4.56 0.3810 WVFGRD96 26.0 110 20 50 4.57 0.3813 WVFGRD96 27.0 105 20 45 4.58 0.3804 WVFGRD96 28.0 105 20 45 4.59 0.3773 WVFGRD96 29.0 80 25 -5 4.59 0.3770 WVFGRD96 30.0 80 25 -10 4.60 0.3817 WVFGRD96 31.0 70 25 -20 4.61 0.3878 WVFGRD96 32.0 65 25 -25 4.62 0.3967 WVFGRD96 33.0 55 20 -35 4.63 0.4083 WVFGRD96 34.0 35 20 -55 4.64 0.4233 WVFGRD96 35.0 30 20 -60 4.65 0.4397 WVFGRD96 36.0 25 20 -65 4.66 0.4549 WVFGRD96 37.0 30 25 -60 4.66 0.4687 WVFGRD96 38.0 25 25 -65 4.67 0.4806 WVFGRD96 39.0 10 25 -80 4.68 0.4955 WVFGRD96 40.0 180 70 -90 4.81 0.5007 WVFGRD96 41.0 5 20 -85 4.82 0.5117 WVFGRD96 42.0 0 20 -90 4.83 0.5197 WVFGRD96 43.0 -5 25 -95 4.83 0.5277 WVFGRD96 44.0 0 25 -90 4.84 0.5349 WVFGRD96 45.0 180 65 -90 4.85 0.5417 WVFGRD96 46.0 -5 25 -95 4.86 0.5464 WVFGRD96 47.0 180 65 -90 4.86 0.5511 WVFGRD96 48.0 -5 25 -95 4.87 0.5543 WVFGRD96 49.0 180 65 -85 4.88 0.5558 WVFGRD96 50.0 -10 25 -100 4.88 0.5576 WVFGRD96 51.0 -10 25 -100 4.89 0.5578 WVFGRD96 52.0 180 65 -85 4.89 0.5552 WVFGRD96 53.0 180 65 -85 4.89 0.5538 WVFGRD96 54.0 -10 25 -100 4.89 0.5513 WVFGRD96 55.0 -10 25 -100 4.90 0.5474 WVFGRD96 56.0 180 65 -85 4.90 0.5426 WVFGRD96 57.0 180 65 -85 4.90 0.5375 WVFGRD96 58.0 180 65 -85 4.90 0.5322 WVFGRD96 59.0 180 65 -85 4.90 0.5265
The best solution is
WVFGRD96 51.0 -10 25 -100 4.89 0.5578
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00