The ANSS event ID is us6000ccnk and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000ccnk/executive.
2020/10/24 16:18:47 62.252 -124.432 5.9 4.5 Canada, NWT
USGS/SLU Moment Tensor Solution
ENS 2020/10/24 16:18:47:0 62.25 -124.43 5.9 4.5 Canada, NWT
Stations used:
1E.MONT2 1E.MONT7 1E.MONT9 AK.BESE AK.JIS AK.LOGN AK.PIN
AK.PNL AK.R32K AK.S31K AK.S32K AK.U33K AK.V35K AT.SIT
CN.BRWY CN.DAWY CN.DLBC CN.FNSB CN.FSJB CN.HYT CN.INK
CN.KUKN CN.NAB1 CN.NAB2 CN.NAHA CN.NBC1 CN.NBC5 CN.NBC7
CN.NBC8 CN.PLBC CN.WHY CN.YUK2 CN.YUK3 CN.YUK4 CN.YUK5
CN.YUK6 CN.YUK7 CN.YUK8 EO.FSJ2 NY.MMPY NY.WGLY NY.WTLY
RV.DEDWA TA.EPYK TA.F30M TA.F31M TA.G29M TA.G30M TA.H29M
TA.H31M TA.I28M TA.I30M TA.J29N TA.J30M TA.K29M TA.L27K
TA.L29M TA.M29M TA.M30M TA.M31M TA.N30M TA.N31M TA.O28M
TA.O29M TA.O30N TA.P29M TA.P30M TA.P32M TA.P33M TA.Q32M
TA.R31K TA.R33M TA.S34M TA.T33K TA.T35M US.WRAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.025 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 6.61e+22 dyne-cm
Mw = 4.48
Z = 4 km
Plane Strike Dip Rake
NP1 325 65 80
NP2 168 27 110
Principal Axes:
Axis Value Plunge Azimuth
T 6.61e+22 68 215
N 0.00e+00 9 329
P -6.61e+22 19 62
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.63e+21
Mxy -1.99e+22
Mxz -2.80e+22
Myy -4.32e+22
Myz -3.15e+22
Mzz 4.98e+22
#-------------
###-------------------
----##----------------------
---#######--------------------
----###########-------------------
----##############------------- --
----################------------ P ---
-----##################---------- ----
-----####################---------------
-----######################---------------
-----#######################--------------
------#######################-------------
------########## ###########------------
-----########## T ############----------
------######### ############----------
------########################--------
------########################------
------#######################-----
------#####################---
-------###################--
------################
------########
Global CMT Convention Moment Tensor:
R T P
4.98e+22 -2.80e+22 3.15e+22
-2.80e+22 -6.63e+21 1.99e+22
3.15e+22 1.99e+22 -4.32e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201024161847/index.html
|
STK = 325
DIP = 65
RAKE = 80
MW = 4.48
HS = 4.0
The NDK file is 20201024161847.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2020/10/24 16:18:47:0 62.25 -124.43 5.9 4.5 Canada, NWT
Stations used:
1E.MONT2 1E.MONT7 1E.MONT9 AK.BESE AK.JIS AK.LOGN AK.PIN
AK.PNL AK.R32K AK.S31K AK.S32K AK.U33K AK.V35K AT.SIT
CN.BRWY CN.DAWY CN.DLBC CN.FNSB CN.FSJB CN.HYT CN.INK
CN.KUKN CN.NAB1 CN.NAB2 CN.NAHA CN.NBC1 CN.NBC5 CN.NBC7
CN.NBC8 CN.PLBC CN.WHY CN.YUK2 CN.YUK3 CN.YUK4 CN.YUK5
CN.YUK6 CN.YUK7 CN.YUK8 EO.FSJ2 NY.MMPY NY.WGLY NY.WTLY
RV.DEDWA TA.EPYK TA.F30M TA.F31M TA.G29M TA.G30M TA.H29M
TA.H31M TA.I28M TA.I30M TA.J29N TA.J30M TA.K29M TA.L27K
TA.L29M TA.M29M TA.M30M TA.M31M TA.N30M TA.N31M TA.O28M
TA.O29M TA.O30N TA.P29M TA.P30M TA.P32M TA.P33M TA.Q32M
TA.R31K TA.R33M TA.S34M TA.T33K TA.T35M US.WRAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.025 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 6.61e+22 dyne-cm
Mw = 4.48
Z = 4 km
Plane Strike Dip Rake
NP1 325 65 80
NP2 168 27 110
Principal Axes:
Axis Value Plunge Azimuth
T 6.61e+22 68 215
N 0.00e+00 9 329
P -6.61e+22 19 62
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.63e+21
Mxy -1.99e+22
Mxz -2.80e+22
Myy -4.32e+22
Myz -3.15e+22
Mzz 4.98e+22
#-------------
###-------------------
----##----------------------
---#######--------------------
----###########-------------------
----##############------------- --
----################------------ P ---
-----##################---------- ----
-----####################---------------
-----######################---------------
-----#######################--------------
------#######################-------------
------########## ###########------------
-----########## T ############----------
------######### ############----------
------########################--------
------########################------
------#######################-----
------#####################---
-------###################--
------################
------########
Global CMT Convention Moment Tensor:
R T P
4.98e+22 -2.80e+22 3.15e+22
-2.80e+22 -6.63e+21 1.99e+22
3.15e+22 1.99e+22 -4.32e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20201024161847/index.html
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 305 80 75 4.55 0.6777
WVFGRD96 2.0 310 75 75 4.50 0.6808
WVFGRD96 3.0 315 70 75 4.47 0.6868
WVFGRD96 4.0 325 65 80 4.48 0.6891
WVFGRD96 5.0 155 25 95 4.48 0.6835
WVFGRD96 6.0 155 30 95 4.48 0.6678
WVFGRD96 7.0 155 30 95 4.46 0.6479
WVFGRD96 8.0 330 60 90 4.45 0.6244
WVFGRD96 9.0 265 50 -55 4.44 0.6282
WVFGRD96 10.0 265 50 -55 4.46 0.6277
WVFGRD96 11.0 265 50 -55 4.46 0.6355
WVFGRD96 12.0 265 50 -55 4.46 0.6363
WVFGRD96 13.0 265 50 -55 4.45 0.6316
WVFGRD96 14.0 270 50 -50 4.45 0.6233
WVFGRD96 15.0 270 50 -50 4.45 0.6136
WVFGRD96 16.0 270 50 -50 4.45 0.6024
WVFGRD96 17.0 270 50 -50 4.45 0.5906
WVFGRD96 18.0 270 50 -50 4.45 0.5788
WVFGRD96 19.0 270 50 -50 4.45 0.5671
WVFGRD96 20.0 270 50 -50 4.47 0.5508
WVFGRD96 21.0 270 50 -50 4.47 0.5360
WVFGRD96 22.0 335 55 -80 4.46 0.5252
WVFGRD96 23.0 335 55 -80 4.46 0.5166
WVFGRD96 24.0 335 55 -80 4.46 0.5072
WVFGRD96 25.0 335 55 -80 4.47 0.4976
WVFGRD96 26.0 340 55 -75 4.47 0.4880
WVFGRD96 27.0 340 55 -75 4.47 0.4780
WVFGRD96 28.0 340 55 -75 4.47 0.4679
WVFGRD96 29.0 340 55 -75 4.48 0.4577
The best solution is
WVFGRD96 4.0 325 65 80 4.48 0.6891
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00