The ANSS event ID is ak020bpy4mtd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak020bpy4mtd/executive.
2020/09/11 13:58:32 61.630 -152.179 121.7 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2020/09/11 13:58:32:0 61.63 -152.18 121.7 4.3 Alaska Stations used: AK.BRLK AK.BWN AK.CAPN AK.CAST AK.CNP AK.CUT AK.DHY AK.DIV AK.FID AK.GHO AK.GLI AK.HIN AK.J19K AK.J20K AK.K20K AK.KTH AK.L18K AK.L19K AK.L20K AK.M20K AK.MCK AK.N18K AK.N19K AK.NEA2 AK.O18K AK.O19K AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.TRF AK.WRH AT.PMR AV.ILSW AV.STLK TA.J18K TA.K17K TA.M22K TA.N17K TA.O22K Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.52e+22 dyne-cm Mw = 4.37 Z = 128 km Plane Strike Dip Rake NP1 309 63 127 NP2 70 45 40 Principal Axes: Axis Value Plunge Azimuth T 4.52e+22 55 268 N 0.00e+00 33 110 P -4.52e+22 10 13 Moment Tensor: (dyne-cm) Component Value Mxx -4.14e+22 Mxy -9.41e+21 Mxz -8.37e+21 Myy 1.23e+22 Myz -2.30e+22 Mzz 2.90e+22 ---------- - -------------- P ----- ----------------- -------- ------------------------------ ##########------------------------ ###############--------------------- ###################------------------- #######################----------------# #########################--------------# ############################-----------### ########### ################---------### ########### T ##################------#### ########### ###################---###### ######################################## ###############################---###### -###########################------#### ---####################-----------## --------#######------------------# ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 2.90e+22 -8.37e+21 2.30e+22 -8.37e+21 -4.14e+22 9.41e+21 2.30e+22 9.41e+21 1.23e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200911135832/index.html |
STK = 70 DIP = 45 RAKE = 40 MW = 4.37 HS = 128.0
The NDK file is 20200911135832.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 100 45 -100 3.44 0.1097 WVFGRD96 4.0 325 60 -35 3.45 0.1158 WVFGRD96 6.0 330 80 -40 3.49 0.1254 WVFGRD96 8.0 330 80 -40 3.57 0.1324 WVFGRD96 10.0 165 65 40 3.62 0.1380 WVFGRD96 12.0 340 50 30 3.65 0.1408 WVFGRD96 14.0 340 50 30 3.68 0.1410 WVFGRD96 16.0 250 55 35 3.70 0.1411 WVFGRD96 18.0 250 50 35 3.72 0.1393 WVFGRD96 20.0 250 50 35 3.75 0.1370 WVFGRD96 22.0 250 50 35 3.77 0.1367 WVFGRD96 24.0 250 50 35 3.79 0.1365 WVFGRD96 26.0 250 55 30 3.82 0.1375 WVFGRD96 28.0 250 60 30 3.84 0.1400 WVFGRD96 30.0 250 60 30 3.86 0.1436 WVFGRD96 32.0 250 65 25 3.88 0.1451 WVFGRD96 34.0 250 65 25 3.89 0.1446 WVFGRD96 36.0 250 65 25 3.91 0.1423 WVFGRD96 38.0 250 70 20 3.94 0.1410 WVFGRD96 40.0 250 70 25 4.01 0.1408 WVFGRD96 42.0 250 70 25 4.03 0.1401 WVFGRD96 44.0 250 70 25 4.06 0.1407 WVFGRD96 46.0 250 70 25 4.08 0.1415 WVFGRD96 48.0 250 70 25 4.09 0.1431 WVFGRD96 50.0 245 75 25 4.10 0.1458 WVFGRD96 52.0 245 75 25 4.12 0.1512 WVFGRD96 54.0 245 80 25 4.14 0.1611 WVFGRD96 56.0 245 80 20 4.15 0.1734 WVFGRD96 58.0 60 90 -25 4.17 0.1883 WVFGRD96 60.0 60 85 -20 4.19 0.2079 WVFGRD96 62.0 60 85 -20 4.21 0.2283 WVFGRD96 64.0 60 85 -20 4.22 0.2480 WVFGRD96 66.0 55 75 -15 4.23 0.2670 WVFGRD96 68.0 70 45 40 4.22 0.2799 WVFGRD96 70.0 70 45 40 4.23 0.2944 WVFGRD96 72.0 65 45 40 4.24 0.3095 WVFGRD96 74.0 65 45 40 4.25 0.3220 WVFGRD96 76.0 65 45 35 4.26 0.3315 WVFGRD96 78.0 65 45 35 4.27 0.3409 WVFGRD96 80.0 65 45 35 4.27 0.3501 WVFGRD96 82.0 65 45 35 4.28 0.3592 WVFGRD96 84.0 65 45 35 4.29 0.3670 WVFGRD96 86.0 65 45 35 4.29 0.3742 WVFGRD96 88.0 65 45 35 4.30 0.3810 WVFGRD96 90.0 65 45 35 4.31 0.3872 WVFGRD96 92.0 65 45 35 4.31 0.3930 WVFGRD96 94.0 65 45 35 4.32 0.3994 WVFGRD96 96.0 65 45 35 4.32 0.4046 WVFGRD96 98.0 65 45 35 4.33 0.4101 WVFGRD96 100.0 65 45 35 4.33 0.4146 WVFGRD96 102.0 65 45 35 4.33 0.4195 WVFGRD96 104.0 70 45 40 4.34 0.4235 WVFGRD96 106.0 70 45 40 4.34 0.4276 WVFGRD96 108.0 70 45 40 4.34 0.4309 WVFGRD96 110.0 70 45 40 4.35 0.4341 WVFGRD96 112.0 70 45 40 4.35 0.4364 WVFGRD96 114.0 70 45 40 4.35 0.4383 WVFGRD96 116.0 70 45 40 4.36 0.4405 WVFGRD96 118.0 70 45 40 4.36 0.4426 WVFGRD96 120.0 70 45 40 4.36 0.4442 WVFGRD96 122.0 70 45 40 4.37 0.4449 WVFGRD96 124.0 70 45 40 4.37 0.4449 WVFGRD96 126.0 70 45 40 4.37 0.4447 WVFGRD96 128.0 70 45 40 4.37 0.4457 WVFGRD96 130.0 70 45 40 4.38 0.4453 WVFGRD96 132.0 70 45 40 4.38 0.4445 WVFGRD96 134.0 70 45 40 4.38 0.4431 WVFGRD96 136.0 70 45 40 4.38 0.4428 WVFGRD96 138.0 70 45 40 4.38 0.4413 WVFGRD96 140.0 70 45 40 4.38 0.4384 WVFGRD96 142.0 70 45 40 4.39 0.4374 WVFGRD96 144.0 70 45 40 4.39 0.4355 WVFGRD96 146.0 70 50 40 4.39 0.4335 WVFGRD96 148.0 70 50 40 4.39 0.4320
The best solution is
WVFGRD96 128.0 70 45 40 4.37 0.4457
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00