Location

Location ANSS

The ANSS event ID is ak020bo3ssdp and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak020bo3ssdp/executive.

2020/09/10 02:18:00 61.459 -149.936 31.7 4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/09/10 02:18:00:0  61.46 -149.94  31.7 4.0 Alaska
 
 Stations used:
   AK.CAST AK.CUT AK.GHO AK.KNK AK.L20K AK.M19K AK.M20K 
   AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AT.PMR 
   AV.STLK TA.M22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.50e+22 dyne-cm
  Mw = 4.05 
  Z  = 46 km
  Plane   Strike  Dip  Rake
   NP1      195    65   -80
   NP2      352    27   -110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.50e+22     19     278
    N   0.00e+00      9      11
    P  -1.50e+22     68     125

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.21e+20
       Mxy    -7.83e+20
       Mxz     3.51e+21
       Myy     1.17e+22
       Myz    -8.86e+21
       Mzz    -1.13e+22
                                                     
                                                     
                                                     
                                                     
                     #########--###                  
                 #############----#####              
              ###############-------######           
             ##############-----------#####          
           ###############-------------######        
          ###############----------------#####       
         ###############-----------------######      
        ###############-------------------######     
        ##   ##########--------------------#####     
       ### T #########---------------------######    
       ###   #########---------------------######    
       ##############----------   ---------######    
       ##############---------- P ---------######    
        #############----------   ---------#####     
        ############-----------------------#####     
         ###########----------------------#####      
          ##########---------------------#####       
           #########---------------------####        
             ########------------------####          
              #######-----------------####           
                 #####--------------###              
                     #-----------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.13e+22   3.51e+21   8.86e+21 
  3.51e+21  -4.21e+20   7.83e+20 
  8.86e+21   7.83e+20   1.17e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200910021800/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 195
      DIP = 65
     RAKE = -80
       MW = 4.05
       HS = 46.0

The NDK file is 20200910021800.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2020/09/10 02:18:00:0  61.46 -149.94  31.7 4.0 Alaska
 
 Stations used:
   AK.CAST AK.CUT AK.GHO AK.KNK AK.L20K AK.M19K AK.M20K 
   AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AT.PMR 
   AV.STLK TA.M22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.50e+22 dyne-cm
  Mw = 4.05 
  Z  = 46 km
  Plane   Strike  Dip  Rake
   NP1      195    65   -80
   NP2      352    27   -110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.50e+22     19     278
    N   0.00e+00      9      11
    P  -1.50e+22     68     125

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.21e+20
       Mxy    -7.83e+20
       Mxz     3.51e+21
       Myy     1.17e+22
       Myz    -8.86e+21
       Mzz    -1.13e+22
                                                     
                                                     
                                                     
                                                     
                     #########--###                  
                 #############----#####              
              ###############-------######           
             ##############-----------#####          
           ###############-------------######        
          ###############----------------#####       
         ###############-----------------######      
        ###############-------------------######     
        ##   ##########--------------------#####     
       ### T #########---------------------######    
       ###   #########---------------------######    
       ##############----------   ---------######    
       ##############---------- P ---------######    
        #############----------   ---------#####     
        ############-----------------------#####     
         ###########----------------------#####      
          ##########---------------------#####       
           #########---------------------####        
             ########------------------####          
              #######-----------------####           
                 #####--------------###              
                     #-----------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.13e+22   3.51e+21   8.86e+21 
  3.51e+21  -4.21e+20   7.83e+20 
  8.86e+21   7.83e+20   1.17e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200910021800/index.html
	
Regional Moment Tensor (Mwr)
Moment 1.927e+15 N-m
Magnitude 4.12 Mwr
Depth 46.0 km
Percent DC 80%
Half Duration -
Catalog US
Data Source US 3
Contributor US 3

Nodal Planes
Plane Strike Dip Rake
NP1 348 27 -124
NP2 206 68 -74

Principal Axes
Axis Value Plunge Azimuth
T 1.819e+15 N-m 21 284
N 0.202e+15 N-m 15 19
P -2.020e+15 N-m 64 142

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   195    45    95   3.17 0.1806
WVFGRD96    2.0    10    40    85   3.34 0.2527
WVFGRD96    3.0     5    30    75   3.40 0.2297
WVFGRD96    4.0   360    25    65   3.40 0.2327
WVFGRD96    5.0   135    70   -40   3.40 0.2438
WVFGRD96    6.0   135    70   -40   3.43 0.2683
WVFGRD96    7.0   140    70   -35   3.45 0.2906
WVFGRD96    8.0   135    65   -40   3.52 0.3014
WVFGRD96    9.0   135    65   -40   3.55 0.3161
WVFGRD96   10.0   135    55   -35   3.57 0.3318
WVFGRD96   11.0   135    55   -40   3.59 0.3438
WVFGRD96   12.0   135    55   -35   3.61 0.3524
WVFGRD96   13.0   130    55   -40   3.63 0.3588
WVFGRD96   14.0   235    55    35   3.66 0.3650
WVFGRD96   15.0   235    55    35   3.68 0.3683
WVFGRD96   16.0    70    60    40   3.67 0.3718
WVFGRD96   17.0    75    55    40   3.69 0.3787
WVFGRD96   18.0    75    55    40   3.70 0.3858
WVFGRD96   19.0    75    55    40   3.72 0.3919
WVFGRD96   20.0    75    55    40   3.73 0.3971
WVFGRD96   21.0   220    65   -65   3.72 0.4047
WVFGRD96   22.0   225    65   -50   3.73 0.4172
WVFGRD96   23.0   225    65   -50   3.75 0.4290
WVFGRD96   24.0   225    65   -50   3.76 0.4396
WVFGRD96   25.0   220    65   -55   3.77 0.4500
WVFGRD96   26.0   220    65   -60   3.78 0.4574
WVFGRD96   27.0   215    80   -75   3.80 0.4749
WVFGRD96   28.0   215    80   -75   3.81 0.4963
WVFGRD96   29.0   215    80   -75   3.83 0.5185
WVFGRD96   30.0   215    80   -75   3.84 0.5393
WVFGRD96   31.0   215    80   -75   3.85 0.5572
WVFGRD96   32.0   215    80   -75   3.86 0.5733
WVFGRD96   33.0   210    75   -75   3.87 0.5894
WVFGRD96   34.0   210    75   -75   3.87 0.6038
WVFGRD96   35.0   210    75   -75   3.88 0.6150
WVFGRD96   36.0   205    70   -70   3.88 0.6285
WVFGRD96   37.0   205    70   -70   3.89 0.6436
WVFGRD96   38.0   205    70   -70   3.89 0.6547
WVFGRD96   39.0   205    70   -70   3.90 0.6626
WVFGRD96   40.0   200    70   -80   4.01 0.6509
WVFGRD96   41.0   200    70   -75   4.02 0.6590
WVFGRD96   42.0   200    70   -80   4.03 0.6622
WVFGRD96   43.0   195    65   -80   4.03 0.6667
WVFGRD96   44.0   195    65   -80   4.04 0.6719
WVFGRD96   45.0   195    65   -80   4.05 0.6747
WVFGRD96   46.0   195    65   -80   4.05 0.6748
WVFGRD96   47.0   195    65   -80   4.06 0.6744
WVFGRD96   48.0   195    65   -80   4.06 0.6727
WVFGRD96   49.0   195    65   -80   4.07 0.6690
WVFGRD96   50.0   195    65   -80   4.07 0.6647
WVFGRD96   51.0   195    65   -80   4.07 0.6579
WVFGRD96   52.0   195    65   -80   4.07 0.6526
WVFGRD96   53.0   195    65   -80   4.08 0.6436
WVFGRD96   54.0   195    65   -80   4.08 0.6374
WVFGRD96   55.0   195    65   -80   4.08 0.6282
WVFGRD96   56.0   195    65   -80   4.08 0.6200
WVFGRD96   57.0   195    65   -80   4.08 0.6113
WVFGRD96   58.0   195    65   -80   4.08 0.6005
WVFGRD96   59.0   195    65   -80   4.08 0.5920

The best solution is

WVFGRD96   46.0   195    65   -80   4.05 0.6748

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 09:23:33 PM CDT 2024