The ANSS event ID is ak02098f8b3x and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02098f8b3x/executive.
2020/07/19 00:35:28 62.150 -154.930 18.3 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2020/07/19 00:35:28:0 62.15 -154.93 18.3 4.2 Alaska Stations used: AK.BWN AK.CAST AK.CNP AK.CUT AK.DHY AK.GHO AK.GLI AK.H21K AK.I21K AK.I23K AK.J17K AK.J19K AK.J20K AK.K20K AK.KNK AK.KTH AK.L18K AK.L22K AK.M20K AK.MCK AK.MLY AK.N18K AK.N19K AK.NEA2 AK.O18K AK.O19K AK.P16K AK.P17K AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.TRF AK.WRH AT.PMR AV.ACH AV.ILSW AV.SPU AV.STLK TA.H17K TA.H18K TA.H19K TA.I17K TA.I20K TA.J16K TA.J18K TA.K15K TA.K17K TA.L16K TA.M14K TA.M16K TA.M17K TA.N14K TA.N15K TA.N17K TA.O15K TA.O16K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.04e+21 dyne-cm Mw = 3.87 Z = 18 km Plane Strike Dip Rake NP1 140 85 30 NP2 47 60 174 Principal Axes: Axis Value Plunge Azimuth T 8.04e+21 24 8 N 0.00e+00 60 149 P -8.04e+21 17 270 Moment Tensor: (dyne-cm) Component Value Mxx 6.54e+21 Mxy 8.60e+20 Mxz 3.01e+21 Myy -7.24e+21 Myz 2.64e+21 Mzz 6.98e+20 ############## ############ ####### -############## T ########## ---############# ########### ------##########################-- --------#########################--- -----------######################----- -------------#####################------ ---------------##################------- -----------------################--------- -- --------------#############---------- -- P ---------------##########------------ -- -----------------#######------------- ----------------------####-------------- ---------------------------------------- ---------------------####------------- -----------------########----------- -------------#############-------- -----#####################---- ###########################- ###################### ############## Global CMT Convention Moment Tensor: R T P 6.98e+20 3.01e+21 -2.64e+21 3.01e+21 6.54e+21 -8.60e+20 -2.64e+21 -8.60e+20 -7.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200719003528/index.html |
STK = 140 DIP = 85 RAKE = 30 MW = 3.87 HS = 18.0
The NDK file is 20200719003528.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2020/07/19 00:35:28:0 62.15 -154.93 18.3 4.2 Alaska Stations used: AK.BWN AK.CAST AK.CNP AK.CUT AK.DHY AK.GHO AK.GLI AK.H21K AK.I21K AK.I23K AK.J17K AK.J19K AK.J20K AK.K20K AK.KNK AK.KTH AK.L18K AK.L22K AK.M20K AK.MCK AK.MLY AK.N18K AK.N19K AK.NEA2 AK.O18K AK.O19K AK.P16K AK.P17K AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.TRF AK.WRH AT.PMR AV.ACH AV.ILSW AV.SPU AV.STLK TA.H17K TA.H18K TA.H19K TA.I17K TA.I20K TA.J16K TA.J18K TA.K15K TA.K17K TA.L16K TA.M14K TA.M16K TA.M17K TA.N14K TA.N15K TA.N17K TA.O15K TA.O16K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 8.04e+21 dyne-cm Mw = 3.87 Z = 18 km Plane Strike Dip Rake NP1 140 85 30 NP2 47 60 174 Principal Axes: Axis Value Plunge Azimuth T 8.04e+21 24 8 N 0.00e+00 60 149 P -8.04e+21 17 270 Moment Tensor: (dyne-cm) Component Value Mxx 6.54e+21 Mxy 8.60e+20 Mxz 3.01e+21 Myy -7.24e+21 Myz 2.64e+21 Mzz 6.98e+20 ############## ############ ####### -############## T ########## ---############# ########### ------##########################-- --------#########################--- -----------######################----- -------------#####################------ ---------------##################------- -----------------################--------- -- --------------#############---------- -- P ---------------##########------------ -- -----------------#######------------- ----------------------####-------------- ---------------------------------------- ---------------------####------------- -----------------########----------- -------------#############-------- -----#####################---- ###########################- ###################### ############## Global CMT Convention Moment Tensor: R T P 6.98e+20 3.01e+21 -2.64e+21 3.01e+21 6.54e+21 -8.60e+20 -2.64e+21 -8.60e+20 -7.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200719003528/index.html |
Regional Moment Tensor (Mwr) Moment 8.742e+14 N-m Magnitude 3.89 Mwr Depth 17.0 km Percent DC 78% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 319 83 -29 NP2 52 61 -172 Principal Axes Axis Value Plunge Azimuth T 9.201e+14 N-m 15 9 N -1.004e+14 N-m 60 127 P -8.197e+14 N-m 25 272 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 320 80 10 3.28 0.2490 WVFGRD96 2.0 320 80 15 3.41 0.3144 WVFGRD96 3.0 320 80 20 3.47 0.3274 WVFGRD96 4.0 140 90 -30 3.52 0.3367 WVFGRD96 5.0 320 90 35 3.55 0.3565 WVFGRD96 6.0 135 85 -35 3.57 0.3833 WVFGRD96 7.0 140 90 35 3.60 0.4099 WVFGRD96 8.0 140 90 40 3.66 0.4477 WVFGRD96 9.0 315 85 -40 3.69 0.4869 WVFGRD96 10.0 315 85 -40 3.71 0.5200 WVFGRD96 11.0 140 90 35 3.74 0.5510 WVFGRD96 12.0 320 90 -35 3.76 0.5773 WVFGRD96 13.0 140 85 35 3.78 0.6001 WVFGRD96 14.0 140 85 30 3.81 0.6196 WVFGRD96 15.0 320 90 -30 3.83 0.6309 WVFGRD96 16.0 140 85 30 3.84 0.6423 WVFGRD96 17.0 320 90 -30 3.86 0.6438 WVFGRD96 18.0 140 85 30 3.87 0.6466 WVFGRD96 19.0 140 85 30 3.89 0.6415 WVFGRD96 20.0 140 85 30 3.90 0.6321 WVFGRD96 21.0 140 85 30 3.91 0.6192 WVFGRD96 22.0 320 90 -30 3.92 0.6000 WVFGRD96 23.0 140 85 30 3.92 0.5846 WVFGRD96 24.0 140 85 30 3.93 0.5638 WVFGRD96 25.0 140 85 30 3.93 0.5416 WVFGRD96 26.0 140 85 30 3.94 0.5187 WVFGRD96 27.0 320 90 -35 3.94 0.4933 WVFGRD96 28.0 140 85 35 3.94 0.4726 WVFGRD96 29.0 140 85 35 3.95 0.4499
The best solution is
WVFGRD96 18.0 140 85 30 3.87 0.6466
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00