The ANSS event ID is us7000aanf and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000aanf/executive.
2020/06/25 05:20:59 44.399 -115.181 7.5 4.6 Idaho
USGS/SLU Moment Tensor Solution ENS 2020/06/25 05:20:59:0 44.40 -115.18 7.5 4.6 Idaho Stations used: GS.ID11 IE.BCYI IW.DLMT IW.FLWY IW.FXWY IW.LOHW IW.MFID IW.MOOW IW.PLID IW.SNOW MB.BUT US.AHID US.BMO US.BOZ US.ELK US.HAWA US.HLID US.HWUT US.LKWY US.MSO US.WVOR UU.BGU UU.HVU UU.SPU UW.BRAN UW.CCRK UW.DDRF UW.IZEE UW.KENT UW.LNO UW.PHIN UW.TUCA UW.UMAT UW.WA2 UW.WOLL UW.YPT WY.YFT WY.YHL WY.YNE Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.02e+22 dyne-cm Mw = 4.57 Z = 14 km Plane Strike Dip Rake NP1 145 65 -45 NP2 258 50 -147 Principal Axes: Axis Value Plunge Azimuth T 9.02e+22 9 205 N 0.00e+00 40 302 P -9.02e+22 49 104 Moment Tensor: (dyne-cm) Component Value Mxx 7.04e+22 Mxy 4.27e+22 Mxz -1.43e+21 Myy -2.15e+22 Myz -4.90e+22 Mzz -4.88e+22 ############## ###################### --########################## ---########################### -----############################# ------############--------########## --------####----------------------#### ---------#----------------------------## ------####------------------------------ -----#######------------------------------ ----#########----------------------------- --############---------------- --------- -##############--------------- P --------- ###############-------------- -------- #################----------------------- ##################-------------------- ##################------------------ ###################--------------- ####################---------- ##### ##############------ ## T ################# ############# Global CMT Convention Moment Tensor: R T P -4.88e+22 -1.43e+21 4.90e+22 -1.43e+21 7.04e+22 -4.27e+22 4.90e+22 -4.27e+22 -2.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200625052059/index.html |
STK = 145 DIP = 65 RAKE = -45 MW = 4.57 HS = 14.0
The NDK file is 20200625052059.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2020/06/25 05:20:59:0 44.40 -115.18 7.5 4.6 Idaho Stations used: GS.ID11 IE.BCYI IW.DLMT IW.FLWY IW.FXWY IW.LOHW IW.MFID IW.MOOW IW.PLID IW.SNOW MB.BUT US.AHID US.BMO US.BOZ US.ELK US.HAWA US.HLID US.HWUT US.LKWY US.MSO US.WVOR UU.BGU UU.HVU UU.SPU UW.BRAN UW.CCRK UW.DDRF UW.IZEE UW.KENT UW.LNO UW.PHIN UW.TUCA UW.UMAT UW.WA2 UW.WOLL UW.YPT WY.YFT WY.YHL WY.YNE Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.02e+22 dyne-cm Mw = 4.57 Z = 14 km Plane Strike Dip Rake NP1 145 65 -45 NP2 258 50 -147 Principal Axes: Axis Value Plunge Azimuth T 9.02e+22 9 205 N 0.00e+00 40 302 P -9.02e+22 49 104 Moment Tensor: (dyne-cm) Component Value Mxx 7.04e+22 Mxy 4.27e+22 Mxz -1.43e+21 Myy -2.15e+22 Myz -4.90e+22 Mzz -4.88e+22 ############## ###################### --########################## ---########################### -----############################# ------############--------########## --------####----------------------#### ---------#----------------------------## ------####------------------------------ -----#######------------------------------ ----#########----------------------------- --############---------------- --------- -##############--------------- P --------- ###############-------------- -------- #################----------------------- ##################-------------------- ##################------------------ ###################--------------- ####################---------- ##### ##############------ ## T ################# ############# Global CMT Convention Moment Tensor: R T P -4.88e+22 -1.43e+21 4.90e+22 -1.43e+21 7.04e+22 -4.27e+22 4.90e+22 -4.27e+22 -2.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200625052059/index.html |
Regional Moment Tensor (Mwr) Moment 9.412e+15 N-m Magnitude 4.58 Mwr Depth 15.0 km Percent DC 96% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 253 57 -160 NP2 152 74 -34 Principal Axes Axis Value Plunge Azimuth T 9.514e+15 N-m 10 206 N -0.209e+15 N-m 52 309 P -9.306e+15 N-m 36 108 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 165 85 -10 4.07 0.2910 WVFGRD96 2.0 165 80 5 4.19 0.3529 WVFGRD96 3.0 165 80 25 4.26 0.3774 WVFGRD96 4.0 160 90 45 4.31 0.4109 WVFGRD96 5.0 340 90 -50 4.34 0.4638 WVFGRD96 6.0 160 90 50 4.36 0.5093 WVFGRD96 7.0 335 85 -45 4.37 0.5471 WVFGRD96 8.0 335 80 -45 4.44 0.5734 WVFGRD96 9.0 165 70 60 4.47 0.5940 WVFGRD96 10.0 145 65 -50 4.51 0.6254 WVFGRD96 11.0 145 65 -50 4.53 0.6534 WVFGRD96 12.0 145 65 -45 4.54 0.6714 WVFGRD96 13.0 145 65 -45 4.56 0.6829 WVFGRD96 14.0 145 65 -45 4.57 0.6871 WVFGRD96 15.0 150 65 -40 4.59 0.6863 WVFGRD96 16.0 150 65 -40 4.60 0.6821 WVFGRD96 17.0 150 65 -40 4.62 0.6710 WVFGRD96 18.0 150 65 -40 4.63 0.6552 WVFGRD96 19.0 155 65 -35 4.64 0.6385 WVFGRD96 20.0 155 65 -35 4.64 0.6192 WVFGRD96 21.0 155 65 -35 4.66 0.5974 WVFGRD96 22.0 155 65 -30 4.66 0.5759 WVFGRD96 23.0 335 90 55 4.65 0.5533 WVFGRD96 24.0 155 90 -55 4.66 0.5412 WVFGRD96 25.0 340 85 55 4.67 0.5282 WVFGRD96 26.0 160 90 -55 4.68 0.5150 WVFGRD96 27.0 340 90 55 4.68 0.5004 WVFGRD96 28.0 160 90 -55 4.69 0.4855 WVFGRD96 29.0 160 90 -55 4.70 0.4701
The best solution is
WVFGRD96 14.0 145 65 -45 4.57 0.6871
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00