The ANSS event ID is pr2020175032 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/pr2020175032/executive.
2020/06/23 20:34:02 19.229 -67.069 9.0 4.63 Puerto Rico
USGS/SLU Moment Tensor Solution ENS 2020/06/23 20:34:02:0 19.23 -67.07 9.0 4.6 Puerto Rico Stations used: GS.PR01 GS.PR02 GS.PR03 GS.PR04 GS.PR05 GS.PR06 IU.SJG PR.AGPR PR.AOPR PR.CELP PR.CRPR PR.ECPR PR.HUMP PR.MLPR PR.PCDR PR.PRSN PR.UUPR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.68e+23 dyne-cm Mw = 4.75 Z = 31 km Plane Strike Dip Rake NP1 340 85 -60 NP2 79 30 -170 Principal Axes: Axis Value Plunge Azimuth T 1.68e+23 33 45 N 0.00e+00 30 157 P -1.68e+23 42 278 Moment Tensor: (dyne-cm) Component Value Mxx 5.67e+22 Mxy 7.22e+22 Mxz 4.21e+22 Myy -3.15e+22 Myz 1.37e+23 Mzz -2.52e+22 ############## -----################# ---------################### -----------################### --------------########### ###### ---------------########### T ####### -----------------########## ######## -------------------##################### ------- ----------#################### -------- P ----------####################- -------- -----------###################- -----------------------#################-- -----------------------################--- -----------------------##############--- #-----------------------############---- ##---------------------##########----- ###--------------------#######------ ####------------------####-------- #######-------------#--------- ####################-------- ##################---- ############## Global CMT Convention Moment Tensor: R T P -2.52e+22 4.21e+22 -1.37e+23 4.21e+22 5.67e+22 -7.22e+22 -1.37e+23 -7.22e+22 -3.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200623203402/index.html |
STK = 340 DIP = 85 RAKE = -60 MW = 4.75 HS = 31.0
The NDK file is 20200623203402.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2020/06/23 20:34:02:0 19.23 -67.07 9.0 4.6 Puerto Rico Stations used: GS.PR01 GS.PR02 GS.PR03 GS.PR04 GS.PR05 GS.PR06 IU.SJG PR.AGPR PR.AOPR PR.CELP PR.CRPR PR.ECPR PR.HUMP PR.MLPR PR.PCDR PR.PRSN PR.UUPR Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 1.68e+23 dyne-cm Mw = 4.75 Z = 31 km Plane Strike Dip Rake NP1 340 85 -60 NP2 79 30 -170 Principal Axes: Axis Value Plunge Azimuth T 1.68e+23 33 45 N 0.00e+00 30 157 P -1.68e+23 42 278 Moment Tensor: (dyne-cm) Component Value Mxx 5.67e+22 Mxy 7.22e+22 Mxz 4.21e+22 Myy -3.15e+22 Myz 1.37e+23 Mzz -2.52e+22 ############## -----################# ---------################### -----------################### --------------########### ###### ---------------########### T ####### -----------------########## ######## -------------------##################### ------- ----------#################### -------- P ----------####################- -------- -----------###################- -----------------------#################-- -----------------------################--- -----------------------##############--- #-----------------------############---- ##---------------------##########----- ###--------------------#######------ ####------------------####-------- #######-------------#--------- ####################-------- ##################---- ############## Global CMT Convention Moment Tensor: R T P -2.52e+22 4.21e+22 -1.37e+23 4.21e+22 5.67e+22 -7.22e+22 -1.37e+23 -7.22e+22 -3.15e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200623203402/index.html |
Regional Moment Tensor (Mwr) Moment 2.447e+16 N-m Magnitude 4.86 Mwr Depth 40.0 km Percent DC 86% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 337 84 117 NP2 80 27 14 Principal Axes Axis Value Plunge Azimuth T 2.355e+16 N-m 45 274 N 0.176e+16 N-m 26 154 P -2.530e+16 N-m 33 45 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 120 45 90 4.03 0.1422 WVFGRD96 2.0 115 50 80 4.16 0.1960 WVFGRD96 3.0 110 50 75 4.21 0.2018 WVFGRD96 4.0 195 55 25 4.19 0.2056 WVFGRD96 5.0 180 60 20 4.18 0.2275 WVFGRD96 6.0 180 60 20 4.21 0.2525 WVFGRD96 7.0 180 65 20 4.25 0.2783 WVFGRD96 8.0 180 60 20 4.29 0.3028 WVFGRD96 9.0 80 90 30 4.30 0.3253 WVFGRD96 10.0 80 90 25 4.32 0.3470 WVFGRD96 11.0 70 65 -20 4.37 0.3688 WVFGRD96 12.0 70 65 -20 4.40 0.3901 WVFGRD96 13.0 70 65 -15 4.42 0.4096 WVFGRD96 14.0 70 65 -15 4.44 0.4284 WVFGRD96 15.0 70 60 -10 4.48 0.4460 WVFGRD96 16.0 70 60 -10 4.49 0.4622 WVFGRD96 17.0 75 50 10 4.54 0.4777 WVFGRD96 18.0 75 50 10 4.55 0.4908 WVFGRD96 19.0 75 50 10 4.57 0.5011 WVFGRD96 20.0 75 50 10 4.58 0.5086 WVFGRD96 21.0 75 50 10 4.60 0.5136 WVFGRD96 22.0 75 50 10 4.61 0.5155 WVFGRD96 23.0 75 50 10 4.62 0.5148 WVFGRD96 24.0 75 50 10 4.62 0.5115 WVFGRD96 25.0 340 80 -55 4.67 0.5134 WVFGRD96 26.0 340 80 -55 4.68 0.5152 WVFGRD96 27.0 340 80 -55 4.69 0.5157 WVFGRD96 28.0 340 80 -55 4.70 0.5150 WVFGRD96 29.0 340 80 -60 4.72 0.5148 WVFGRD96 30.0 340 85 -60 4.74 0.5161 WVFGRD96 31.0 340 85 -60 4.75 0.5167 WVFGRD96 32.0 340 85 -60 4.75 0.5163 WVFGRD96 33.0 340 85 -60 4.76 0.5150 WVFGRD96 34.0 340 85 -65 4.78 0.5132 WVFGRD96 35.0 340 85 -65 4.78 0.5111 WVFGRD96 36.0 340 85 -65 4.79 0.5075 WVFGRD96 37.0 340 85 -65 4.79 0.5028 WVFGRD96 38.0 340 85 -65 4.79 0.4975 WVFGRD96 39.0 340 85 -60 4.78 0.4920 WVFGRD96 40.0 340 85 -70 4.91 0.4901 WVFGRD96 41.0 340 85 -70 4.92 0.4866 WVFGRD96 42.0 340 85 -70 4.92 0.4807 WVFGRD96 43.0 340 85 -70 4.93 0.4730 WVFGRD96 44.0 340 85 -70 4.94 0.4639 WVFGRD96 45.0 340 85 -70 4.94 0.4536 WVFGRD96 46.0 340 85 -70 4.94 0.4424 WVFGRD96 47.0 340 85 -70 4.94 0.4306 WVFGRD96 48.0 340 85 -75 4.97 0.4185 WVFGRD96 49.0 340 85 -75 4.97 0.4068 WVFGRD96 50.0 340 85 -75 4.97 0.3951 WVFGRD96 51.0 335 80 -75 4.94 0.3840 WVFGRD96 52.0 275 40 30 4.89 0.3709 WVFGRD96 53.0 275 45 30 4.87 0.3657 WVFGRD96 54.0 275 45 30 4.88 0.3611 WVFGRD96 55.0 275 45 30 4.89 0.3563 WVFGRD96 56.0 275 45 30 4.89 0.3514 WVFGRD96 57.0 275 45 30 4.90 0.3464 WVFGRD96 58.0 270 50 25 4.88 0.3417 WVFGRD96 59.0 270 50 25 4.88 0.3374
The best solution is
WVFGRD96 31.0 340 85 -60 4.75 0.5167
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00