The ANSS event ID is nn00730721 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00730721/executive.
2020/05/22 00:22:00 38.231 -117.794 7.2 5.1 Nevada
USGS/SLU Moment Tensor Solution
ENS 2020/05/22 00:22:00:0 38.23 -117.79 7.2 5.1 Nevada
Stations used:
BK.DANT BK.HATC BK.MHC BK.OVRO BK.SUTB BK.WELL BK.WINE
CI.BFS CI.CCC CI.CLC CI.CWC CI.FUR CI.GRA CI.GSC CI.HAR
CI.ISA CI.LRL CI.LUC2 CI.MPM CI.MTP CI.OSI CI.RAG CI.TIN
CI.TPO GS.MCA04 IM.NV31 LB.TPH NC.LDH NC.MDPB NN.BEK
NN.CMK6 NN.DSP NN.GMN NN.GWY NN.KVN NN.LHV NN.MCA06 NN.MPK
NN.PAH NN.PIO NN.PNT NN.PRN NN.Q09A NN.QSM NN.REDF NN.S11A
NN.SHP NN.WAK NN.WDEM NN.WLDB SN.HEL US.ELK US.TPNV UU.CCUT
UU.LCMT UU.PSUT UU.SZCU UU.VRUT
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 1.04e+23 dyne-cm
Mw = 4.61
Z = 9 km
Plane Strike Dip Rake
NP1 70 85 -10
NP2 161 80 -175
Principal Axes:
Axis Value Plunge Azimuth
T 1.04e+23 3 116
N 0.00e+00 79 224
P -1.04e+23 11 25
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.25e+22
Mxy -7.88e+22
Mxz -1.97e+22
Myy 6.56e+22
Myz -2.29e+21
Mzz -3.12e+21
-------------
####------------- P --
#######------------- -----
#########---------------------
###########-----------------------
############------------------------
##############------------------------
###############-----------------------##
################-------------------#####
#################---------------##########
##################---------###############
###################---####################
#################--#######################
##########---------#####################
###-----------------#################
-------------------################# T
-------------------################
-------------------###############
------------------############
------------------##########
----------------######
--------------
Global CMT Convention Moment Tensor:
R T P
-3.12e+21 -1.97e+22 2.29e+21
-1.97e+22 -6.25e+22 7.88e+22
2.29e+21 7.88e+22 6.56e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200522002200/index.html
|
STK = 70
DIP = 85
RAKE = -10
MW = 4.61
HS = 9.0
The NDK file is 20200522002200.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2020/05/22 00:22:00:0 38.23 -117.79 7.2 5.1 Nevada
Stations used:
BK.DANT BK.HATC BK.MHC BK.OVRO BK.SUTB BK.WELL BK.WINE
CI.BFS CI.CCC CI.CLC CI.CWC CI.FUR CI.GRA CI.GSC CI.HAR
CI.ISA CI.LRL CI.LUC2 CI.MPM CI.MTP CI.OSI CI.RAG CI.TIN
CI.TPO GS.MCA04 IM.NV31 LB.TPH NC.LDH NC.MDPB NN.BEK
NN.CMK6 NN.DSP NN.GMN NN.GWY NN.KVN NN.LHV NN.MCA06 NN.MPK
NN.PAH NN.PIO NN.PNT NN.PRN NN.Q09A NN.QSM NN.REDF NN.S11A
NN.SHP NN.WAK NN.WDEM NN.WLDB SN.HEL US.ELK US.TPNV UU.CCUT
UU.LCMT UU.PSUT UU.SZCU UU.VRUT
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 1.04e+23 dyne-cm
Mw = 4.61
Z = 9 km
Plane Strike Dip Rake
NP1 70 85 -10
NP2 161 80 -175
Principal Axes:
Axis Value Plunge Azimuth
T 1.04e+23 3 116
N 0.00e+00 79 224
P -1.04e+23 11 25
Moment Tensor: (dyne-cm)
Component Value
Mxx -6.25e+22
Mxy -7.88e+22
Mxz -1.97e+22
Myy 6.56e+22
Myz -2.29e+21
Mzz -3.12e+21
-------------
####------------- P --
#######------------- -----
#########---------------------
###########-----------------------
############------------------------
##############------------------------
###############-----------------------##
################-------------------#####
#################---------------##########
##################---------###############
###################---####################
#################--#######################
##########---------#####################
###-----------------#################
-------------------################# T
-------------------################
-------------------###############
------------------############
------------------##########
----------------######
--------------
Global CMT Convention Moment Tensor:
R T P
-3.12e+21 -1.97e+22 2.29e+21
-1.97e+22 -6.25e+22 7.88e+22
2.29e+21 7.88e+22 6.56e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200522002200/index.html
|
W-phase Moment Tensor (Mww) Moment 1.867e+16 N-m Magnitude 4.78 Mww Depth 15.5 km Percent DC 96% Half Duration 0.62 s Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 68 86 -8 NP2 159 82 -176 Principal Axes Axis Value Plunge Azimuth T 1.850e+16 N-m 3 114 N 0.033e+16 N-m 81 223 P -1.883e+16 N-m 9 23 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 75 85 -5 4.24 0.3693
WVFGRD96 2.0 75 85 -10 4.35 0.4780
WVFGRD96 3.0 75 90 -15 4.41 0.5424
WVFGRD96 4.0 70 75 -15 4.47 0.6040
WVFGRD96 5.0 70 80 -10 4.50 0.6532
WVFGRD96 6.0 70 85 -10 4.53 0.6906
WVFGRD96 7.0 70 85 -10 4.56 0.7190
WVFGRD96 8.0 70 85 -10 4.59 0.7412
WVFGRD96 9.0 70 85 -10 4.61 0.7508
WVFGRD96 10.0 70 85 -10 4.63 0.7491
WVFGRD96 11.0 255 90 5 4.64 0.7416
WVFGRD96 12.0 255 90 5 4.65 0.7288
WVFGRD96 13.0 75 90 -5 4.66 0.7134
WVFGRD96 14.0 75 90 -5 4.67 0.6979
WVFGRD96 15.0 255 90 5 4.67 0.6814
WVFGRD96 16.0 75 90 -5 4.68 0.6645
WVFGRD96 17.0 255 90 5 4.68 0.6478
WVFGRD96 18.0 75 85 5 4.69 0.6325
WVFGRD96 19.0 75 85 5 4.69 0.6173
WVFGRD96 20.0 75 85 5 4.70 0.6021
WVFGRD96 21.0 255 90 -5 4.70 0.5862
WVFGRD96 22.0 75 85 5 4.71 0.5740
WVFGRD96 23.0 255 90 -5 4.71 0.5591
WVFGRD96 24.0 75 85 5 4.72 0.5469
WVFGRD96 25.0 75 85 5 4.72 0.5346
WVFGRD96 26.0 255 90 -5 4.73 0.5221
WVFGRD96 27.0 75 85 5 4.73 0.5114
WVFGRD96 28.0 255 90 -5 4.74 0.5004
WVFGRD96 29.0 255 90 -5 4.74 0.4901
The best solution is
WVFGRD96 9.0 70 85 -10 4.61 0.7508
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00