The ANSS event ID is ak0201zcjff3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0201zcjff3/executive.
2020/02/12 14:16:04 58.816 -154.489 117.7 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2020/02/12 14:16:04:0 58.82 -154.49 117.7 4.5 Alaska Stations used: AK.BRLK AK.CNP AK.HOM AK.N18K AK.O18K AK.O19K AK.P16K AK.P17K AK.Q19K AV.ACH AV.ILSW AV.RED II.KDAK TA.N17K TA.O15K TA.P18K TA.P19K Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.38e+22 dyne-cm Mw = 4.47 Z = 134 km Plane Strike Dip Rake NP1 319 76 154 NP2 55 65 15 Principal Axes: Axis Value Plunge Azimuth T 6.38e+22 28 275 N 0.00e+00 61 113 P -6.38e+22 8 9 Moment Tensor: (dyne-cm) Component Value Mxx -6.10e+22 Mxy -1.32e+22 Mxz -6.25e+21 Myy 4.83e+22 Myz -2.74e+22 Mzz 1.27e+22 -------- P --- ------------ ------- ---------------------------- ####-------------------------- #########------------------------- #############----------------------# ################-------------------### ###################----------------##### ####################--------------###### #### ################----------######### #### T ##################-------########## #### ###################----############ ########################################## ########################----############ ######################-------########### ##################-----------######### ############------------------###### -##--------------------------##### ----------------------------## ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.27e+22 -6.25e+21 2.74e+22 -6.25e+21 -6.10e+22 1.32e+22 2.74e+22 1.32e+22 4.83e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200212141604/index.html |
STK = 55 DIP = 65 RAKE = 15 MW = 4.47 HS = 134.0
The NDK file is 20200212141604.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 270 40 -85 3.57 0.1897 WVFGRD96 4.0 310 85 30 3.55 0.2121 WVFGRD96 6.0 135 70 30 3.63 0.2529 WVFGRD96 8.0 135 70 30 3.72 0.2839 WVFGRD96 10.0 135 70 30 3.77 0.3031 WVFGRD96 12.0 135 70 30 3.81 0.3063 WVFGRD96 14.0 135 70 30 3.85 0.2998 WVFGRD96 16.0 135 70 30 3.87 0.2868 WVFGRD96 18.0 135 75 35 3.89 0.2701 WVFGRD96 20.0 130 80 35 3.91 0.2484 WVFGRD96 22.0 220 60 25 3.93 0.2384 WVFGRD96 24.0 230 60 35 3.94 0.2406 WVFGRD96 26.0 230 60 35 3.95 0.2405 WVFGRD96 28.0 230 60 35 3.97 0.2389 WVFGRD96 30.0 230 70 40 3.98 0.2370 WVFGRD96 32.0 230 65 40 4.00 0.2354 WVFGRD96 34.0 230 65 40 4.00 0.2295 WVFGRD96 36.0 230 65 40 4.01 0.2236 WVFGRD96 38.0 230 65 40 4.03 0.2171 WVFGRD96 40.0 20 55 -45 4.13 0.2177 WVFGRD96 42.0 20 55 -45 4.15 0.2176 WVFGRD96 44.0 20 55 -45 4.17 0.2138 WVFGRD96 46.0 45 60 30 4.19 0.2235 WVFGRD96 48.0 45 60 30 4.21 0.2337 WVFGRD96 50.0 45 60 30 4.23 0.2442 WVFGRD96 52.0 45 60 30 4.25 0.2554 WVFGRD96 54.0 50 60 35 4.26 0.2692 WVFGRD96 56.0 50 60 35 4.28 0.2895 WVFGRD96 58.0 50 60 30 4.29 0.3143 WVFGRD96 60.0 55 55 30 4.31 0.3393 WVFGRD96 62.0 55 55 25 4.32 0.3638 WVFGRD96 64.0 55 55 25 4.34 0.3875 WVFGRD96 66.0 60 50 20 4.36 0.4073 WVFGRD96 68.0 60 50 20 4.37 0.4254 WVFGRD96 70.0 60 50 15 4.39 0.4403 WVFGRD96 72.0 60 50 15 4.39 0.4544 WVFGRD96 74.0 60 50 15 4.40 0.4650 WVFGRD96 76.0 60 55 25 4.39 0.4757 WVFGRD96 78.0 60 55 25 4.40 0.4865 WVFGRD96 80.0 60 55 25 4.40 0.4957 WVFGRD96 82.0 60 55 25 4.41 0.5041 WVFGRD96 84.0 60 55 25 4.41 0.5123 WVFGRD96 86.0 60 55 25 4.42 0.5182 WVFGRD96 88.0 60 55 20 4.42 0.5246 WVFGRD96 90.0 60 55 20 4.43 0.5292 WVFGRD96 92.0 60 55 20 4.43 0.5352 WVFGRD96 94.0 60 55 20 4.43 0.5401 WVFGRD96 96.0 60 55 20 4.44 0.5447 WVFGRD96 98.0 60 55 20 4.44 0.5486 WVFGRD96 100.0 60 55 15 4.45 0.5520 WVFGRD96 102.0 60 60 20 4.44 0.5556 WVFGRD96 104.0 60 60 20 4.44 0.5592 WVFGRD96 106.0 60 60 20 4.44 0.5626 WVFGRD96 108.0 60 60 20 4.44 0.5661 WVFGRD96 110.0 60 60 20 4.45 0.5680 WVFGRD96 112.0 55 65 20 4.44 0.5702 WVFGRD96 114.0 55 65 20 4.44 0.5717 WVFGRD96 116.0 55 65 20 4.45 0.5734 WVFGRD96 118.0 55 65 20 4.45 0.5754 WVFGRD96 120.0 55 65 20 4.45 0.5766 WVFGRD96 122.0 55 65 15 4.46 0.5781 WVFGRD96 124.0 55 65 15 4.46 0.5799 WVFGRD96 126.0 55 65 15 4.46 0.5807 WVFGRD96 128.0 55 65 15 4.47 0.5810 WVFGRD96 130.0 55 65 15 4.47 0.5812 WVFGRD96 132.0 55 65 15 4.47 0.5819 WVFGRD96 134.0 55 65 15 4.47 0.5823 WVFGRD96 136.0 55 65 15 4.48 0.5817 WVFGRD96 138.0 55 65 15 4.48 0.5806 WVFGRD96 140.0 55 70 15 4.48 0.5810 WVFGRD96 142.0 55 70 15 4.48 0.5809 WVFGRD96 144.0 55 70 15 4.48 0.5800 WVFGRD96 146.0 55 70 15 4.48 0.5788 WVFGRD96 148.0 55 70 15 4.49 0.5791
The best solution is
WVFGRD96 134.0 55 65 15 4.47 0.5823
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00