Location

Location ANSS

The ANSS event ID is us60007f42 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us60007f42/executive.

2020/01/24 21:35:29 48.549 -125.184 10.0 4.5 BC, Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/01/24 21:35:29:0  48.55 -125.18  10.0 4.5 BC, Canada
 
 Stations used:
   CC.CARB CN.BFSB CN.CBB CN.CLRS CN.GDR CN.HOPB CN.NCSB 
   CN.NLLB CN.PABB CN.PGC CN.PHC CN.PNT CN.SHB CN.SNB CN.VGZ 
   CN.WPB CN.WSLR UW.BERY UW.DONK UW.FORK UW.GNW UW.HOPR 
   UW.LUMI UW.OMAK UW.RPW2 UW.SHUK UW.WAT2 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.75e+22 dyne-cm
  Mw = 4.44 
  Z  = 31 km
  Plane   Strike  Dip  Rake
   NP1      348    86   -145
   NP2      255    55    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.75e+22     21     116
    N   0.00e+00     55     354
    P  -5.75e+22     27     217

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.91e+22
       Mxy    -4.18e+22
       Mxz     1.02e+22
       Myy     2.38e+22
       Myz     3.13e+22
       Mzz    -4.71e+21
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 ########--------------              
              ###########-----------------           
             #############-----------------          
           ###############-------------------        
          #################-------------------       
         ################--################----      
        ############--------###################-     
        #########-----------####################     
       #######--------------#####################    
       #####-----------------####################    
       ###-------------------####################    
       ##---------------------###################    
        ----------------------##################     
        ----------------------###########   ####     
         ----------------------########## T ###      
          -------   -----------##########   ##       
           ------ P -----------##############        
             ----   ------------###########          
              ------------------##########           
                 ---------------#######              
                     -----------###                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.71e+21   1.02e+22  -3.13e+22 
  1.02e+22  -1.91e+22   4.18e+22 
 -3.13e+22   4.18e+22   2.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200124213529/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 255
      DIP = 55
     RAKE = -5
       MW = 4.44
       HS = 31.0

The NDK file is 20200124213529.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2020/01/24 21:35:29:0  48.55 -125.18  10.0 4.5 BC, Canada
 
 Stations used:
   CC.CARB CN.BFSB CN.CBB CN.CLRS CN.GDR CN.HOPB CN.NCSB 
   CN.NLLB CN.PABB CN.PGC CN.PHC CN.PNT CN.SHB CN.SNB CN.VGZ 
   CN.WPB CN.WSLR UW.BERY UW.DONK UW.FORK UW.GNW UW.HOPR 
   UW.LUMI UW.OMAK UW.RPW2 UW.SHUK UW.WAT2 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.75e+22 dyne-cm
  Mw = 4.44 
  Z  = 31 km
  Plane   Strike  Dip  Rake
   NP1      348    86   -145
   NP2      255    55    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.75e+22     21     116
    N   0.00e+00     55     354
    P  -5.75e+22     27     217

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.91e+22
       Mxy    -4.18e+22
       Mxz     1.02e+22
       Myy     2.38e+22
       Myz     3.13e+22
       Mzz    -4.71e+21
                                                     
                                                     
                                                     
                                                     
                     ###-----------                  
                 ########--------------              
              ###########-----------------           
             #############-----------------          
           ###############-------------------        
          #################-------------------       
         ################--################----      
        ############--------###################-     
        #########-----------####################     
       #######--------------#####################    
       #####-----------------####################    
       ###-------------------####################    
       ##---------------------###################    
        ----------------------##################     
        ----------------------###########   ####     
         ----------------------########## T ###      
          -------   -----------##########   ##       
           ------ P -----------##############        
             ----   ------------###########          
              ------------------##########           
                 ---------------#######              
                     -----------###                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.71e+21   1.02e+22  -3.13e+22 
  1.02e+22  -1.91e+22   4.18e+22 
 -3.13e+22   4.18e+22   2.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200124213529/index.html
	
Regional Moment Tensor (Mwr)
Moment 6.498e+15 N-m
Magnitude 4.48 Mwr
Depth 31.0 km
Percent DC 78%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 258 59 -9
NP2 352 82 -149

Principal Axes
Axis Value Plunge Azimuth
T 6.080e+15 N-m 15 121
N 0.768e+15 N-m 58 5
P -6.848e+15 N-m 27 219

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   165    65   -40   3.72 0.2046
WVFGRD96    2.0    35    45    90   3.99 0.2973
WVFGRD96    3.0   165    65   -35   3.93 0.3108
WVFGRD96    4.0   170    85   -20   3.94 0.3300
WVFGRD96    5.0   170    85   -20   3.97 0.3420
WVFGRD96    6.0   170    90   -20   4.00 0.3523
WVFGRD96    7.0   350    80    20   4.03 0.3638
WVFGRD96    8.0   355    70    30   4.09 0.3767
WVFGRD96    9.0   350    80    25   4.11 0.3837
WVFGRD96   10.0   350    80    25   4.13 0.3883
WVFGRD96   11.0   350    80    25   4.15 0.3912
WVFGRD96   12.0   350    80    25   4.16 0.3933
WVFGRD96   13.0   255    65   -10   4.18 0.4034
WVFGRD96   14.0   255    65   -10   4.21 0.4209
WVFGRD96   15.0   255    65   -10   4.23 0.4377
WVFGRD96   16.0   255    65   -10   4.25 0.4547
WVFGRD96   17.0   255    60   -10   4.26 0.4717
WVFGRD96   18.0   255    60   -10   4.28 0.4878
WVFGRD96   19.0   255    60   -10   4.30 0.5038
WVFGRD96   20.0   255    60   -10   4.31 0.5204
WVFGRD96   21.0   255    60   -10   4.33 0.5352
WVFGRD96   22.0   255    60   -10   4.35 0.5513
WVFGRD96   23.0   255    60   -10   4.36 0.5700
WVFGRD96   24.0   255    60   -10   4.38 0.5856
WVFGRD96   25.0   255    60   -10   4.39 0.6012
WVFGRD96   26.0   255    60   -10   4.40 0.6145
WVFGRD96   27.0   255    60   -10   4.41 0.6278
WVFGRD96   28.0   255    60   -10   4.42 0.6371
WVFGRD96   29.0   255    60   -10   4.43 0.6452
WVFGRD96   30.0   255    55    -5   4.44 0.6497
WVFGRD96   31.0   255    55    -5   4.44 0.6547
WVFGRD96   32.0   255    55    -5   4.45 0.6543
WVFGRD96   33.0   255    55    -5   4.46 0.6539
WVFGRD96   34.0   255    55    -5   4.46 0.6509
WVFGRD96   35.0   255    60   -10   4.47 0.6456
WVFGRD96   36.0   255    60   -10   4.48 0.6427
WVFGRD96   37.0   255    60   -10   4.49 0.6377
WVFGRD96   38.0   255    60   -10   4.50 0.6344
WVFGRD96   39.0   255    65   -10   4.51 0.6321
WVFGRD96   40.0   255    50    -5   4.57 0.6239
WVFGRD96   41.0   255    55    -5   4.58 0.6187
WVFGRD96   42.0   255    55    -5   4.58 0.6129
WVFGRD96   43.0   255    60   -10   4.59 0.6099
WVFGRD96   44.0   255    60    -5   4.60 0.6047
WVFGRD96   45.0   255    60    -5   4.60 0.6016
WVFGRD96   46.0   255    60    -5   4.61 0.5965
WVFGRD96   47.0   255    60    -5   4.62 0.5928
WVFGRD96   48.0   255    65    -5   4.62 0.5883
WVFGRD96   49.0   255    65    -5   4.63 0.5844

The best solution is

WVFGRD96   31.0   255    55    -5   4.44 0.6547

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 10:54:27 AM CDT 2024