Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is ak02010m7v5f and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02010m7v5f/executive.

2020/01/22 14:10:08 60.363 -141.356 6.2 4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/01/22 14:10:08:0  60.36 -141.36   6.2 4.0 Alaska
 
 Stations used:
   AK.BARN AK.BCP AK.BESE AK.BMR AK.CRQ AK.CTG AK.DIV AK.DOT 
   AK.EYAK AK.FID AK.GHO AK.GLB AK.GRNC AK.HIN AK.ISLE AK.KLU 
   AK.KNK AK.L26K AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MESA 
   AK.P23K AK.PAX AK.PIN AK.RIDG AK.SAW AK.SCM AK.SCRK AK.SSP 
   AK.SUCK AK.TABL AK.TGL AK.VRDI AK.WAX AT.MENT AT.PMR 
   CN.DAWY CN.HYT CN.WHY TA.K29M TA.L27K TA.M29M TA.M30M 
   TA.M31M TA.N25K TA.N30M TA.N31M TA.O28M TA.O29M TA.O30N 
   TA.P30M TA.P32M 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.025 n 3 
   lp c 0.05 n 3 
 
 Best Fitting Double Couple
  Mo = 1.45e+22 dyne-cm
  Mw = 4.04 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      292    80   -129
   NP2      190    40   -15
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.45e+22     25      51
    N   0.00e+00     38     299
    P  -1.45e+22     41     165

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.96e+21
       Mxy     7.80e+21
       Mxz     1.04e+22
       Myy     6.64e+21
       Myz     2.50e+21
       Mzz    -3.68e+21
                                                     
                                                     
                                                     
                                                     
                     -------#######                  
                 --------##############              
              ---------###################           
             --------######################          
           ---------###################   ###        
          ---------#################### T ####       
         ---------#####################   #####      
        ########-###############################     
        ########------##########################     
       #########------------#####################    
       #########----------------#################    
       ########---------------------#############    
       ########-------------------------#########    
        #######----------------------------#####     
        ########------------------------------##     
         #######-------------------------------      
          #######-------------   -------------       
           ######------------- P ------------        
             #####------------   ----------          
              #####-----------------------           
                 ####------------------              
                     ##------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.68e+21   1.04e+22  -2.50e+21 
  1.04e+22  -2.96e+21  -7.80e+21 
 -2.50e+21  -7.80e+21   6.64e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200122141008/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 190
      DIP = 40
     RAKE = -15
       MW = 4.04
       HS = 9.0

The NDK file is 20200122141008.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2020/01/22 14:10:08:0  60.36 -141.36   6.2 4.0 Alaska
 
 Stations used:
   AK.BARN AK.BCP AK.BESE AK.BMR AK.CRQ AK.CTG AK.DIV AK.DOT 
   AK.EYAK AK.FID AK.GHO AK.GLB AK.GRNC AK.HIN AK.ISLE AK.KLU 
   AK.KNK AK.L26K AK.LOGN AK.M26K AK.M27K AK.MCAR AK.MESA 
   AK.P23K AK.PAX AK.PIN AK.RIDG AK.SAW AK.SCM AK.SCRK AK.SSP 
   AK.SUCK AK.TABL AK.TGL AK.VRDI AK.WAX AT.MENT AT.PMR 
   CN.DAWY CN.HYT CN.WHY TA.K29M TA.L27K TA.M29M TA.M30M 
   TA.M31M TA.N25K TA.N30M TA.N31M TA.O28M TA.O29M TA.O30N 
   TA.P30M TA.P32M 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.025 n 3 
   lp c 0.05 n 3 
 
 Best Fitting Double Couple
  Mo = 1.45e+22 dyne-cm
  Mw = 4.04 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      292    80   -129
   NP2      190    40   -15
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.45e+22     25      51
    N   0.00e+00     38     299
    P  -1.45e+22     41     165

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.96e+21
       Mxy     7.80e+21
       Mxz     1.04e+22
       Myy     6.64e+21
       Myz     2.50e+21
       Mzz    -3.68e+21
                                                     
                                                     
                                                     
                                                     
                     -------#######                  
                 --------##############              
              ---------###################           
             --------######################          
           ---------###################   ###        
          ---------#################### T ####       
         ---------#####################   #####      
        ########-###############################     
        ########------##########################     
       #########------------#####################    
       #########----------------#################    
       ########---------------------#############    
       ########-------------------------#########    
        #######----------------------------#####     
        ########------------------------------##     
         #######-------------------------------      
          #######-------------   -------------       
           ######------------- P ------------        
             #####------------   ----------          
              #####-----------------------           
                 ####------------------              
                     ##------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.68e+21   1.04e+22  -2.50e+21 
  1.04e+22  -2.96e+21  -7.80e+21 
 -2.50e+21  -7.80e+21   6.64e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200122141008/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.025 n 3 
lp c 0.05 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   200    55    15   3.76 0.3645
WVFGRD96    2.0   205    45    20   3.89 0.4268
WVFGRD96    3.0   205    35    20   3.97 0.4624
WVFGRD96    4.0   205    35    20   3.99 0.4873
WVFGRD96    5.0   200    35    10   4.00 0.5039
WVFGRD96    6.0   195    40     0   3.99 0.5163
WVFGRD96    7.0   195    45    -5   3.98 0.5244
WVFGRD96    8.0   195    40     0   4.03 0.5270
WVFGRD96    9.0   190    40   -15   4.04 0.5276
WVFGRD96   10.0   190    45   -15   4.03 0.5258
WVFGRD96   11.0   190    45   -20   4.04 0.5218
WVFGRD96   12.0   190    45   -20   4.04 0.5146
WVFGRD96   13.0   190    50   -20   4.04 0.5080
WVFGRD96   14.0   190    50   -20   4.04 0.5012
WVFGRD96   15.0   190    50   -20   4.04 0.4930
WVFGRD96   16.0   195    55   -15   4.04 0.4850
WVFGRD96   17.0   205    65    25   4.04 0.4768
WVFGRD96   18.0   205    65    20   4.04 0.4708
WVFGRD96   19.0   200    70    20   4.05 0.4656
WVFGRD96   20.0   200    70    20   4.05 0.4601
WVFGRD96   21.0   200    65    15   4.06 0.4538
WVFGRD96   22.0   200    65    15   4.06 0.4482
WVFGRD96   23.0   200    65    15   4.07 0.4427
WVFGRD96   24.0   200    70    15   4.07 0.4375
WVFGRD96   25.0   200    75    20   4.08 0.4329
WVFGRD96   26.0   200    75    20   4.09 0.4283
WVFGRD96   27.0   200    70    15   4.09 0.4241
WVFGRD96   28.0   200    70    15   4.10 0.4202
WVFGRD96   29.0   200    70    15   4.10 0.4160

The best solution is

WVFGRD96    9.0   190    40   -15   4.04 0.5276

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.025 n 3 
lp c 0.05 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 10:46:30 AM CDT 2024