Location

Location ANSS

The ANSS event ID is pr2020012015 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/pr2020012015/executive.

2020/01/12 21:10:14 17.939 -66.813 7.0 4.2 Puerto Rico

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2020/01/12 21:10:14:0  17.94  -66.81   7.0 4.2 Puerto Rico
 
 Stations used:
   GS.PR04 GS.PR05 GS.PR06 PR.AGPR PR.AOPR PR.CELP PR.CRPR 
   PR.ECPR PR.EMPR PR.GCPR PR.HUMP PR.MLPR PR.OBIP PR.PRSN 
   PR.UUPR 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.55e+22 dyne-cm
  Mw = 4.06 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1        6    72   154
   NP2      105    65    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.55e+22     31     324
    N   0.00e+00     58     154
    P  -1.55e+22      5      57

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.81e+21
       Mxy    -1.24e+22
       Mxz     4.88e+21
       Myy    -6.87e+21
       Myz    -5.06e+21
       Mzz     4.06e+21
                                                     
                                                     
                                                     
                                                     
                     ##########----                  
                 ##############--------              
              ##################----------           
             #####   ###########-----------          
           ####### T ############----------          
          ########   ############---------- P        
         ########################----------   -      
        #########################---------------     
        #########################---------------     
       ---#######################----------------    
       -----#####################----------------    
       -------###################----------------    
       -----------##############-----------------    
        --------------##########----------------     
        --------------------####-------------###     
         ----------------------################      
          ---------------------###############       
           -------------------###############        
             ----------------##############          
              ---------------#############           
                 -----------###########              
                     ------########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.06e+21   4.88e+21   5.06e+21 
  4.88e+21   2.81e+21   1.24e+22 
  5.06e+21   1.24e+22  -6.87e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200112211014/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 105
      DIP = 65
     RAKE = 20
       MW = 4.06
       HS = 10.0

The NDK file is 20200112211014.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2020/01/12 21:10:14:0  17.94  -66.81   7.0 4.2 Puerto Rico
 
 Stations used:
   GS.PR04 GS.PR05 GS.PR06 PR.AGPR PR.AOPR PR.CELP PR.CRPR 
   PR.ECPR PR.EMPR PR.GCPR PR.HUMP PR.MLPR PR.OBIP PR.PRSN 
   PR.UUPR 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.55e+22 dyne-cm
  Mw = 4.06 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1        6    72   154
   NP2      105    65    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.55e+22     31     324
    N   0.00e+00     58     154
    P  -1.55e+22      5      57

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.81e+21
       Mxy    -1.24e+22
       Mxz     4.88e+21
       Myy    -6.87e+21
       Myz    -5.06e+21
       Mzz     4.06e+21
                                                     
                                                     
                                                     
                                                     
                     ##########----                  
                 ##############--------              
              ##################----------           
             #####   ###########-----------          
           ####### T ############----------          
          ########   ############---------- P        
         ########################----------   -      
        #########################---------------     
        #########################---------------     
       ---#######################----------------    
       -----#####################----------------    
       -------###################----------------    
       -----------##############-----------------    
        --------------##########----------------     
        --------------------####-------------###     
         ----------------------################      
          ---------------------###############       
           -------------------###############        
             ----------------##############          
              ---------------#############           
                 -----------###########              
                     ------########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.06e+21   4.88e+21   5.06e+21 
  4.88e+21   2.81e+21   1.24e+22 
  5.06e+21   1.24e+22  -6.87e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200112211014/index.html
	

Regional Moment Tensor (Mwr)
Moment 1.125e+15 N-m
Magnitude 3.97 Mwr
Depth 12.0 km
Percent DC 26%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 209 71 -151
NP2 109 62 -21

Principal Axes
Axis Value Plunge Azimuth
T 1.284e+15 N-m 6 338
N -0.476e+15 N-m 56 239
P -0.809e+15 N-m 34 72

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   110    90     0   3.51 0.2461
WVFGRD96    2.0   110    65    25   3.71 0.3417
WVFGRD96    3.0   105    50    10   3.80 0.3901
WVFGRD96    4.0   105    50    15   3.86 0.4440
WVFGRD96    5.0   105    55    15   3.89 0.4885
WVFGRD96    6.0   105    60    15   3.92 0.5253
WVFGRD96    7.0   105    65    15   3.96 0.5496
WVFGRD96    8.0   105    60    20   4.02 0.5705
WVFGRD96    9.0   105    65    20   4.04 0.5791
WVFGRD96   10.0   105    65    20   4.06 0.5797
WVFGRD96   11.0   105    70    15   4.07 0.5728
WVFGRD96   12.0   105    70    15   4.08 0.5650
WVFGRD96   13.0   105    70    15   4.10 0.5539
WVFGRD96   14.0   105    70    15   4.11 0.5417
WVFGRD96   15.0   105    70    15   4.12 0.5298
WVFGRD96   16.0   105    70    15   4.13 0.5193
WVFGRD96   17.0   105    70    15   4.14 0.5086
WVFGRD96   18.0   105    70    15   4.15 0.4982
WVFGRD96   19.0   105    70    15   4.16 0.4887
WVFGRD96   20.0   105    70    10   4.17 0.4807
WVFGRD96   21.0   105    70    10   4.18 0.4730
WVFGRD96   22.0   105    70    10   4.19 0.4667
WVFGRD96   23.0   105    70    15   4.20 0.4606
WVFGRD96   24.0   105    70    10   4.20 0.4566
WVFGRD96   25.0   105    70    10   4.21 0.4538
WVFGRD96   26.0   105    70    10   4.22 0.4512
WVFGRD96   27.0   105    70    10   4.23 0.4495
WVFGRD96   28.0   105    70    10   4.24 0.4488
WVFGRD96   29.0   105    75    15   4.24 0.4497

The best solution is

WVFGRD96   10.0   105    65    20   4.06 0.5797

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 08:47:24 AM CDT 2024