The ANSS event ID is us70006vll and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us70006vll/executive.
2020/01/07 08:24:26 17.869 -66.827 8.9 6.4 Puerto Rico
USGS/SLU Moment Tensor Solution
ENS 2020/01/07 08:24:26:0 17.87 -66.83 8.9 6.4 Puerto Rico
Stations used:
PR.AGPR PR.CELP PR.CRPR PR.ECPR PR.EMPR PR.PRSN
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 2.69e+25 dyne-cm
Mw = 6.22
Z = 15 km
Plane Strike Dip Rake
NP1 185 90 -175
NP2 95 85 0
Principal Axes:
Axis Value Plunge Azimuth
T 2.69e+25 4 320
N 0.00e+00 85 185
P -2.69e+25 4 50
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.66e+24
Mxy -2.64e+25
Mxz 2.04e+23
Myy -4.66e+24
Myz -2.34e+24
Mzz 0.00e+00
#########-----
#############---------
T ############------------
# ############------------ P
##################------------ -
###################-----------------
####################------------------
#####################-------------------
####################--------------------
#####################---------------------
----#################---------------------
-----------------####---------------------
---------------------#####################
--------------------####################
-------------------#####################
------------------####################
-----------------###################
----------------##################
--------------################
-------------###############
---------#############
-----#########
Global CMT Convention Moment Tensor:
R T P
0.00e+00 2.04e+23 2.34e+24
2.04e+23 4.66e+24 2.64e+25
2.34e+24 2.64e+25 -4.66e+24
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200107082426/index.html
|
STK = 95
DIP = 85
RAKE = 0
MW = 6.22
HS = 15.0
The NDK file is 20200107082426.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2020/01/07 08:24:26:0 17.87 -66.83 8.9 6.4 Puerto Rico
Stations used:
PR.AGPR PR.CELP PR.CRPR PR.ECPR PR.EMPR PR.PRSN
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.06 n 3
Best Fitting Double Couple
Mo = 2.69e+25 dyne-cm
Mw = 6.22
Z = 15 km
Plane Strike Dip Rake
NP1 185 90 -175
NP2 95 85 0
Principal Axes:
Axis Value Plunge Azimuth
T 2.69e+25 4 320
N 0.00e+00 85 185
P -2.69e+25 4 50
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.66e+24
Mxy -2.64e+25
Mxz 2.04e+23
Myy -4.66e+24
Myz -2.34e+24
Mzz 0.00e+00
#########-----
#############---------
T ############------------
# ############------------ P
##################------------ -
###################-----------------
####################------------------
#####################-------------------
####################--------------------
#####################---------------------
----#################---------------------
-----------------####---------------------
---------------------#####################
--------------------####################
-------------------#####################
------------------####################
-----------------###################
----------------##################
--------------################
-------------###############
---------#############
-----#########
Global CMT Convention Moment Tensor:
R T P
0.00e+00 2.04e+23 2.34e+24
2.04e+23 4.66e+24 2.64e+25
2.34e+24 2.64e+25 -4.66e+24
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200107082426/index.html
|
Body-wave Moment Tensor (Mwb) Moment 3.482e+18 N-m Magnitude 6.29 Mwb Depth 6.0 km Percent DC 58% Half Duration - Catalog US Data Source US 5 Contributor US 5 Nodal Planes Plane Strike Dip Rake NP1 282 47 -53 NP2 55 54 -122 Principal Axes Axis Value Plunge Azimuth T 3.812e+18 N-m 4 167 N -0.799e+18 N-m 26 75 P -3.013e+18 N-m 64 266 |
W-phase Moment Tensor (Mww) Moment 5.043e+18 N-m Magnitude 6.40 Mww Depth 13.5 km Percent DC 52% Half Duration 4.05 s Catalog US Data Source US 5 Contributor US 5 Nodal Planes Plane Strike Dip Rake NP1 268 43 -58 NP2 47 54 -116 Principal Axes Axis Value Plunge Azimuth T 5.578e+18 N-m 6 156 N -1.341e+18 N-m 21 63 P -4.238e+18 N-m 68 261 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 275 85 0 5.79 0.3089
WVFGRD96 2.0 275 85 0 5.91 0.4250
WVFGRD96 3.0 275 85 0 5.97 0.4789
WVFGRD96 4.0 275 80 -10 6.01 0.5100
WVFGRD96 5.0 275 80 -10 6.03 0.5345
WVFGRD96 6.0 275 85 -10 6.06 0.5603
WVFGRD96 7.0 275 90 5 6.09 0.5896
WVFGRD96 8.0 275 90 10 6.13 0.6231
WVFGRD96 9.0 275 90 5 6.14 0.6448
WVFGRD96 10.0 275 90 5 6.16 0.6613
WVFGRD96 11.0 95 85 -5 6.18 0.6750
WVFGRD96 12.0 95 85 -5 6.19 0.6856
WVFGRD96 13.0 275 90 5 6.19 0.6898
WVFGRD96 14.0 95 85 -5 6.21 0.6953
WVFGRD96 15.0 95 85 0 6.22 0.6966
WVFGRD96 16.0 95 90 0 6.21 0.6963
WVFGRD96 17.0 95 90 0 6.22 0.6958
WVFGRD96 18.0 275 90 0 6.23 0.6940
WVFGRD96 19.0 275 90 0 6.24 0.6910
WVFGRD96 20.0 95 90 0 6.24 0.6873
WVFGRD96 21.0 275 90 0 6.25 0.6828
WVFGRD96 22.0 275 90 -5 6.25 0.6776
WVFGRD96 23.0 275 90 -5 6.26 0.6722
WVFGRD96 24.0 95 90 5 6.26 0.6660
WVFGRD96 25.0 95 90 5 6.27 0.6600
WVFGRD96 26.0 275 85 -5 6.26 0.6550
WVFGRD96 27.0 275 85 -5 6.27 0.6498
WVFGRD96 28.0 275 85 -5 6.28 0.6441
WVFGRD96 29.0 275 85 -5 6.29 0.6378
The best solution is
WVFGRD96 15.0 95 85 0 6.22 0.6966
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00