The ANSS event ID is ak019g813maq and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019g813maq/executive.
2019/12/19 14:09:53 59.273 -153.554 107.8 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/12/19 14:09:53:0 59.27 -153.55 107.8 3.9 Alaska Stations used: AK.BRLK AK.CNP AK.HOM AK.N18K AK.O18K AK.O19K AK.Q19K II.KDAK TA.P18K TA.P19K Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.97e+22 dyne-cm Mw = 4.13 Z = 104 km Plane Strike Dip Rake NP1 230 80 -65 NP2 340 27 -157 Principal Axes: Axis Value Plunge Azimuth T 1.97e+22 31 300 N 0.00e+00 25 45 P -1.97e+22 49 167 Moment Tensor: (dyne-cm) Component Value Mxx -4.50e+21 Mxy -4.44e+21 Mxz 1.38e+22 Myy 1.06e+22 Myz -9.69e+21 Mzz -6.11e+21 #####--------- ###############------- #####################------- ########################------ ############################--#### ############################--###### ##### ##################------###### ###### T ###############----------###### ###### #############-------------##### ####################----------------###### ##################-------------------##### ################---------------------##### ##############-----------------------##### ###########-------------------------#### #########--------------------------##### #######------------- -----------#### ####--------------- P ----------#### ##---------------- ----------### ----------------------------## -------------------------### --------------------## -------------- Global CMT Convention Moment Tensor: R T P -6.11e+21 1.38e+22 9.69e+21 1.38e+22 -4.50e+21 4.44e+21 9.69e+21 4.44e+21 1.06e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191219140953/index.html |
STK = 230 DIP = 80 RAKE = -65 MW = 4.13 HS = 104.0
The NDK file is 20191219140953.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 350 50 50 3.42 0.2947 WVFGRD96 4.0 180 50 65 3.52 0.3238 WVFGRD96 6.0 40 65 90 3.60 0.3391 WVFGRD96 8.0 225 30 95 3.63 0.3418 WVFGRD96 10.0 315 55 -50 3.59 0.3448 WVFGRD96 12.0 260 35 -25 3.62 0.3517 WVFGRD96 14.0 260 40 -25 3.63 0.3579 WVFGRD96 16.0 265 40 -15 3.64 0.3623 WVFGRD96 18.0 265 40 -15 3.66 0.3659 WVFGRD96 20.0 265 40 -15 3.68 0.3694 WVFGRD96 22.0 260 35 -20 3.72 0.3749 WVFGRD96 24.0 260 35 -20 3.74 0.3809 WVFGRD96 26.0 260 35 -15 3.77 0.3869 WVFGRD96 28.0 255 35 -20 3.79 0.3910 WVFGRD96 30.0 255 35 -20 3.81 0.3954 WVFGRD96 32.0 255 35 -20 3.82 0.3983 WVFGRD96 34.0 250 35 -25 3.85 0.4005 WVFGRD96 36.0 245 35 -30 3.87 0.4007 WVFGRD96 38.0 240 35 -35 3.90 0.4006 WVFGRD96 40.0 250 45 -40 3.93 0.4087 WVFGRD96 42.0 250 45 -40 3.95 0.4180 WVFGRD96 44.0 255 50 -35 3.96 0.4249 WVFGRD96 46.0 255 50 -40 3.98 0.4306 WVFGRD96 48.0 255 50 -40 4.00 0.4332 WVFGRD96 50.0 245 80 -55 4.01 0.4604 WVFGRD96 52.0 245 80 -55 4.02 0.4833 WVFGRD96 54.0 245 85 -50 4.01 0.5075 WVFGRD96 56.0 245 85 -50 4.03 0.5301 WVFGRD96 58.0 245 85 -55 4.05 0.5487 WVFGRD96 60.0 235 90 -55 4.05 0.5687 WVFGRD96 62.0 55 90 55 4.05 0.5832 WVFGRD96 64.0 55 90 55 4.06 0.5956 WVFGRD96 66.0 235 90 -55 4.06 0.6077 WVFGRD96 68.0 240 90 -60 4.08 0.6167 WVFGRD96 70.0 65 85 65 4.10 0.6301 WVFGRD96 72.0 240 90 -65 4.09 0.6362 WVFGRD96 74.0 65 85 65 4.10 0.6464 WVFGRD96 76.0 240 90 -65 4.10 0.6521 WVFGRD96 78.0 240 90 -65 4.10 0.6574 WVFGRD96 80.0 60 90 65 4.11 0.6634 WVFGRD96 82.0 240 90 -65 4.11 0.6680 WVFGRD96 84.0 60 90 65 4.11 0.6721 WVFGRD96 86.0 240 90 -65 4.11 0.6741 WVFGRD96 88.0 240 90 -65 4.11 0.6764 WVFGRD96 90.0 60 90 65 4.12 0.6786 WVFGRD96 92.0 60 90 65 4.12 0.6800 WVFGRD96 94.0 235 85 -65 4.12 0.6831 WVFGRD96 96.0 235 85 -65 4.12 0.6842 WVFGRD96 98.0 230 80 -65 4.13 0.6856 WVFGRD96 100.0 230 80 -65 4.13 0.6866 WVFGRD96 102.0 230 80 -65 4.13 0.6872 WVFGRD96 104.0 230 80 -65 4.13 0.6876 WVFGRD96 106.0 230 80 -65 4.13 0.6869 WVFGRD96 108.0 230 80 -65 4.14 0.6872 WVFGRD96 110.0 225 75 -65 4.15 0.6854 WVFGRD96 112.0 225 75 -65 4.15 0.6856 WVFGRD96 114.0 215 70 -65 4.17 0.6839 WVFGRD96 116.0 215 70 -65 4.17 0.6845 WVFGRD96 118.0 215 70 -65 4.18 0.6838 WVFGRD96 120.0 215 70 -65 4.18 0.6828 WVFGRD96 122.0 215 70 -65 4.18 0.6822 WVFGRD96 124.0 215 70 -65 4.18 0.6796 WVFGRD96 126.0 215 70 -65 4.19 0.6785 WVFGRD96 128.0 215 70 -65 4.19 0.6766 WVFGRD96 130.0 215 70 -65 4.19 0.6750 WVFGRD96 132.0 215 70 -65 4.19 0.6736 WVFGRD96 134.0 215 70 -65 4.19 0.6703 WVFGRD96 136.0 215 70 -65 4.20 0.6682 WVFGRD96 138.0 210 65 -65 4.22 0.6672
The best solution is
WVFGRD96 104.0 230 80 -65 4.13 0.6876
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00