The ANSS event ID is ak019g4iwye2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019g4iwye2/executive.
2019/12/17 02:15:27 60.604 -152.294 104.0 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/12/17 02:15:27:0 60.60 -152.29 104.0 4.1 Alaska Stations used: AK.BRLK AK.CNP AK.CUT AK.HOM AK.KNK AK.L19K AK.O18K AK.O19K AK.PPLA AK.Q19K AK.RC01 AK.SAW AK.SKN AK.SSN AV.ILSW AV.STLK TA.M22K TA.P19K Filtering commands used: cut o DIST/3.6 -20 o DIST/3.6 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 130 km Plane Strike Dip Rake NP1 332 69 148 NP2 75 60 25 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 38 291 N 0.00e+00 52 122 P -3.31e+22 5 25 Moment Tensor: (dyne-cm) Component Value Mxx -2.43e+22 Mxy -1.95e+22 Mxz 2.88e+21 Myy 1.22e+22 Myz -1.63e+22 Mzz 1.21e+22 -------------- ###--------------- P - ########------------- ---- ############------------------ ###############------------------- ##################------------------ ####################------------------ ###### ##############----------------- ###### T ###############---------------- ####### ################-------------### ###########################-----------#### ############################--------###### ############################-----######### ############################-########### --#######################----########### -------#########------------########## ----------------------------######## ---------------------------####### -------------------------##### ------------------------#### ---------------------# -------------- Global CMT Convention Moment Tensor: R T P 1.21e+22 2.88e+21 1.63e+22 2.88e+21 -2.43e+22 1.95e+22 1.63e+22 1.95e+22 1.22e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191217021527/index.html |
STK = 75 DIP = 60 RAKE = 25 MW = 4.28 HS = 130.0
The NDK file is 20191217021527.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.6 -20 o DIST/3.6 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 325 60 -25 3.48 0.4108 WVFGRD96 4.0 325 85 25 3.56 0.4581 WVFGRD96 6.0 340 65 35 3.63 0.4988 WVFGRD96 8.0 345 60 40 3.70 0.5158 WVFGRD96 10.0 330 65 30 3.70 0.5205 WVFGRD96 12.0 330 70 30 3.71 0.5192 WVFGRD96 14.0 325 75 25 3.73 0.5135 WVFGRD96 16.0 140 90 -25 3.75 0.5059 WVFGRD96 18.0 250 75 25 3.78 0.5103 WVFGRD96 20.0 250 75 25 3.81 0.5263 WVFGRD96 22.0 250 75 20 3.84 0.5449 WVFGRD96 24.0 245 75 20 3.86 0.5616 WVFGRD96 26.0 245 75 20 3.88 0.5727 WVFGRD96 28.0 245 80 20 3.90 0.5776 WVFGRD96 30.0 245 80 20 3.92 0.5798 WVFGRD96 32.0 245 80 20 3.93 0.5777 WVFGRD96 34.0 245 80 20 3.95 0.5764 WVFGRD96 36.0 245 80 20 3.98 0.5755 WVFGRD96 38.0 240 70 15 4.00 0.5744 WVFGRD96 40.0 240 65 20 4.06 0.5747 WVFGRD96 42.0 240 65 20 4.09 0.5659 WVFGRD96 44.0 235 70 15 4.10 0.5553 WVFGRD96 46.0 235 65 10 4.11 0.5491 WVFGRD96 48.0 230 70 -10 4.13 0.5479 WVFGRD96 50.0 230 70 -15 4.14 0.5507 WVFGRD96 52.0 230 70 -15 4.15 0.5546 WVFGRD96 54.0 230 70 -15 4.17 0.5606 WVFGRD96 56.0 230 70 -15 4.18 0.5669 WVFGRD96 58.0 230 70 -20 4.19 0.5723 WVFGRD96 60.0 65 70 35 4.19 0.5835 WVFGRD96 62.0 65 70 35 4.20 0.5954 WVFGRD96 64.0 65 70 35 4.20 0.6036 WVFGRD96 66.0 65 65 35 4.20 0.6138 WVFGRD96 68.0 65 65 30 4.20 0.6225 WVFGRD96 70.0 65 65 30 4.20 0.6310 WVFGRD96 72.0 65 65 30 4.21 0.6383 WVFGRD96 74.0 65 65 30 4.21 0.6444 WVFGRD96 76.0 70 65 35 4.22 0.6493 WVFGRD96 78.0 70 65 35 4.22 0.6562 WVFGRD96 80.0 70 65 35 4.22 0.6602 WVFGRD96 82.0 70 65 35 4.23 0.6628 WVFGRD96 84.0 70 65 35 4.23 0.6668 WVFGRD96 86.0 70 65 30 4.22 0.6711 WVFGRD96 88.0 70 65 30 4.23 0.6740 WVFGRD96 90.0 70 65 30 4.23 0.6770 WVFGRD96 92.0 70 65 30 4.23 0.6793 WVFGRD96 94.0 70 65 30 4.23 0.6811 WVFGRD96 96.0 70 65 30 4.24 0.6830 WVFGRD96 98.0 70 65 30 4.24 0.6846 WVFGRD96 100.0 70 65 30 4.24 0.6856 WVFGRD96 102.0 70 65 30 4.24 0.6864 WVFGRD96 104.0 70 65 30 4.25 0.6869 WVFGRD96 106.0 70 65 30 4.25 0.6870 WVFGRD96 108.0 70 65 30 4.25 0.6869 WVFGRD96 110.0 70 65 30 4.25 0.6864 WVFGRD96 112.0 70 65 30 4.25 0.6853 WVFGRD96 114.0 75 60 30 4.26 0.6849 WVFGRD96 116.0 75 60 30 4.26 0.6853 WVFGRD96 118.0 75 60 25 4.26 0.6858 WVFGRD96 120.0 75 60 25 4.26 0.6857 WVFGRD96 122.0 75 60 25 4.27 0.6852 WVFGRD96 124.0 75 60 25 4.27 0.6852 WVFGRD96 126.0 75 60 25 4.27 0.6869 WVFGRD96 128.0 75 60 25 4.28 0.6881 WVFGRD96 130.0 75 60 25 4.28 0.6883 WVFGRD96 132.0 75 55 25 4.27 0.6874 WVFGRD96 134.0 75 55 25 4.28 0.6873 WVFGRD96 136.0 75 55 20 4.28 0.6869 WVFGRD96 138.0 75 55 20 4.28 0.6873
The best solution is
WVFGRD96 130.0 75 60 25 4.28 0.6883
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.6 -20 o DIST/3.6 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00