The ANSS event ID is ak019fe8ccze and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019fe8ccze/executive.
2019/12/01 12:27:52 59.605 -152.783 88.2 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2019/12/01 12:27:52:0 59.60 -152.78 88.2 4.5 Alaska
Stations used:
AK.BRLK AK.CNP AK.HOM AK.KLU AK.L19K AK.M20K AK.N18K
AK.N19K AK.O18K AK.O19K AK.P23K AK.Q19K AK.RC01 AK.SKN
AK.SLK AK.SWD AV.ILSW AV.RED AV.STLK II.KDAK TA.O22K
TA.P18K TA.P19K TA.Q20K
Filtering commands used:
cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 8.71e+22 dyne-cm
Mw = 4.56
Z = 90 km
Plane Strike Dip Rake
NP1 95 65 35
NP2 349 59 150
Principal Axes:
Axis Value Plunge Azimuth
T 8.71e+22 42 314
N 0.00e+00 48 126
P -8.71e+22 4 220
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.67e+22
Mxy -6.70e+22
Mxz 3.46e+22
Myy -1.15e+22
Myz -2.72e+22
Mzz 3.83e+22
####----------
###########-----------
###############-------------
##################------------
#####################-------------
######## ############-------------
######### T #############-------------
########## #############--------------
###########################-------------
#############################-------------
-############################-------------
---##########################-------------
-------######################-----------##
----------##################-------#####
----------------------###----###########
---------------------------###########
--------------------------##########
-------------------------#########
- ------------------########
P ------------------#######
-----------------#####
------------##
Global CMT Convention Moment Tensor:
R T P
3.83e+22 3.46e+22 2.72e+22
3.46e+22 -2.67e+22 6.70e+22
2.72e+22 6.70e+22 -1.15e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191201122752/index.html
|
STK = 95
DIP = 65
RAKE = 35
MW = 4.56
HS = 90.0
The NDK file is 20191201122752.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2019/12/01 12:27:52:0 59.60 -152.78 88.2 4.5 Alaska
Stations used:
AK.BRLK AK.CNP AK.HOM AK.KLU AK.L19K AK.M20K AK.N18K
AK.N19K AK.O18K AK.O19K AK.P23K AK.Q19K AK.RC01 AK.SKN
AK.SLK AK.SWD AV.ILSW AV.RED AV.STLK II.KDAK TA.O22K
TA.P18K TA.P19K TA.Q20K
Filtering commands used:
cut o DIST/3.4 -40 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 8.71e+22 dyne-cm
Mw = 4.56
Z = 90 km
Plane Strike Dip Rake
NP1 95 65 35
NP2 349 59 150
Principal Axes:
Axis Value Plunge Azimuth
T 8.71e+22 42 314
N 0.00e+00 48 126
P -8.71e+22 4 220
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.67e+22
Mxy -6.70e+22
Mxz 3.46e+22
Myy -1.15e+22
Myz -2.72e+22
Mzz 3.83e+22
####----------
###########-----------
###############-------------
##################------------
#####################-------------
######## ############-------------
######### T #############-------------
########## #############--------------
###########################-------------
#############################-------------
-############################-------------
---##########################-------------
-------######################-----------##
----------##################-------#####
----------------------###----###########
---------------------------###########
--------------------------##########
-------------------------#########
- ------------------########
P ------------------#######
-----------------#####
------------##
Global CMT Convention Moment Tensor:
R T P
3.83e+22 3.46e+22 2.72e+22
3.46e+22 -2.67e+22 6.70e+22
2.72e+22 6.70e+22 -1.15e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191201122752/index.html
|
Regional Moment Tensor (Mwr) Moment 8.385e+15 N-m Magnitude 4.55 Mwr Depth 90.0 km Percent DC 77% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 348 58 154 NP2 92 68 35 Principal Axes Axis Value Plunge Azimuth T 8.857e+15 N-m 39 313 N -1.041e+15 N-m 50 121 P -7.816e+15 N-m 6 218 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 130 45 -95 3.74 0.2399
WVFGRD96 4.0 355 70 -25 3.72 0.2556
WVFGRD96 6.0 -5 60 -20 3.79 0.2835
WVFGRD96 8.0 355 55 -20 3.88 0.2971
WVFGRD96 10.0 -5 60 -20 3.92 0.2955
WVFGRD96 12.0 95 70 25 3.96 0.3099
WVFGRD96 14.0 90 75 20 4.00 0.3226
WVFGRD96 16.0 90 75 20 4.03 0.3329
WVFGRD96 18.0 90 75 20 4.06 0.3438
WVFGRD96 20.0 90 75 20 4.09 0.3585
WVFGRD96 22.0 90 75 20 4.12 0.3757
WVFGRD96 24.0 90 75 20 4.15 0.3938
WVFGRD96 26.0 90 75 20 4.17 0.4123
WVFGRD96 28.0 95 75 20 4.19 0.4298
WVFGRD96 30.0 95 75 20 4.21 0.4463
WVFGRD96 32.0 95 70 25 4.23 0.4630
WVFGRD96 34.0 95 70 25 4.24 0.4738
WVFGRD96 36.0 95 70 25 4.26 0.4904
WVFGRD96 38.0 95 70 25 4.29 0.5058
WVFGRD96 40.0 100 65 30 4.36 0.5348
WVFGRD96 42.0 100 65 30 4.39 0.5413
WVFGRD96 44.0 100 65 30 4.41 0.5503
WVFGRD96 46.0 100 65 30 4.42 0.5548
WVFGRD96 48.0 95 65 30 4.43 0.5649
WVFGRD96 50.0 95 65 30 4.45 0.5772
WVFGRD96 52.0 95 65 30 4.46 0.5908
WVFGRD96 54.0 95 65 30 4.47 0.6073
WVFGRD96 56.0 95 65 30 4.48 0.6238
WVFGRD96 58.0 95 65 35 4.49 0.6353
WVFGRD96 60.0 95 65 35 4.50 0.6498
WVFGRD96 62.0 95 65 35 4.50 0.6613
WVFGRD96 64.0 95 65 40 4.51 0.6715
WVFGRD96 66.0 95 65 40 4.51 0.6821
WVFGRD96 68.0 95 65 35 4.52 0.6914
WVFGRD96 70.0 95 65 35 4.52 0.6992
WVFGRD96 72.0 95 65 35 4.53 0.7043
WVFGRD96 74.0 95 65 35 4.53 0.7076
WVFGRD96 76.0 95 65 35 4.54 0.7116
WVFGRD96 78.0 95 65 35 4.54 0.7146
WVFGRD96 80.0 95 65 35 4.54 0.7184
WVFGRD96 82.0 95 65 35 4.55 0.7204
WVFGRD96 84.0 95 65 35 4.55 0.7217
WVFGRD96 86.0 95 65 35 4.55 0.7223
WVFGRD96 88.0 95 65 35 4.56 0.7251
WVFGRD96 90.0 95 65 35 4.56 0.7258
WVFGRD96 92.0 95 65 35 4.56 0.7238
WVFGRD96 94.0 95 65 35 4.57 0.7254
WVFGRD96 96.0 95 65 35 4.57 0.7234
WVFGRD96 98.0 95 65 35 4.57 0.7204
WVFGRD96 100.0 95 65 35 4.58 0.7192
WVFGRD96 102.0 95 65 35 4.58 0.7168
WVFGRD96 104.0 95 65 35 4.58 0.7164
WVFGRD96 106.0 95 65 35 4.59 0.7139
WVFGRD96 108.0 95 65 35 4.59 0.7094
WVFGRD96 110.0 95 65 35 4.59 0.7082
WVFGRD96 112.0 95 65 35 4.60 0.7038
WVFGRD96 114.0 95 65 35 4.60 0.7016
WVFGRD96 116.0 95 65 35 4.60 0.6952
WVFGRD96 118.0 95 65 35 4.61 0.6944
The best solution is
WVFGRD96 90.0 95 65 35 4.56 0.7258
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00