The ANSS event ID is ak019edz87xd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019edz87xd/executive.
2019/11/09 20:18:31 60.031 -153.400 146.3 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/11/09 20:18:31:0 60.03 -153.40 146.3 3.9 Alaska Stations used: AK.CNP AK.HOM AK.L19K AK.N19K AK.PPLA AK.Q19K AK.RC01 AK.SKN AK.SSN AV.ACH AV.ILSW AV.STLK II.KDAK TA.M22K TA.O19K TA.P19K TA.Q20K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.17e+22 dyne-cm Mw = 3.98 Z = 168 km Plane Strike Dip Rake NP1 310 67 136 NP2 60 50 30 Principal Axes: Axis Value Plunge Azimuth T 1.17e+22 46 267 N 0.00e+00 42 108 P -1.17e+22 11 9 Moment Tensor: (dyne-cm) Component Value Mxx -1.11e+22 Mxy -1.39e+21 Mxz -2.39e+21 Myy 5.30e+21 Myz -6.17e+21 Mzz 5.79e+21 -------- P --- ------------ ------- ---------------------------- ------------------------------ ########-------------------------- #############----------------------- #################--------------------# #####################----------------### #######################--------------### ###########################----------##### ######### ################--------###### ######### T ##################-----####### ######### ####################-######### ###############################-######## ############################-----####### #########################--------##### ####################-------------### ---###########-------------------# ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 5.79e+21 -2.39e+21 6.17e+21 -2.39e+21 -1.11e+22 1.39e+21 6.17e+21 1.39e+21 5.30e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191109201831/index.html |
STK = 60 DIP = 50 RAKE = 30 MW = 3.98 HS = 168.0
The NDK file is 20191109201831.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 290 65 15 2.93 0.1446 WVFGRD96 4.0 300 70 45 3.08 0.1647 WVFGRD96 6.0 295 70 35 3.13 0.1834 WVFGRD96 8.0 300 75 45 3.23 0.1944 WVFGRD96 10.0 300 75 40 3.26 0.1978 WVFGRD96 12.0 295 80 35 3.29 0.1952 WVFGRD96 14.0 295 80 35 3.32 0.1886 WVFGRD96 16.0 295 80 35 3.34 0.1796 WVFGRD96 18.0 200 50 -5 3.37 0.1812 WVFGRD96 20.0 200 50 -5 3.40 0.1888 WVFGRD96 22.0 200 50 -10 3.44 0.1984 WVFGRD96 24.0 205 50 -5 3.46 0.2073 WVFGRD96 26.0 205 55 -10 3.48 0.2146 WVFGRD96 28.0 210 55 -5 3.50 0.2206 WVFGRD96 30.0 210 60 -5 3.51 0.2269 WVFGRD96 32.0 210 60 -5 3.53 0.2260 WVFGRD96 34.0 210 65 -5 3.54 0.2225 WVFGRD96 36.0 215 65 0 3.56 0.2191 WVFGRD96 38.0 215 70 0 3.59 0.2143 WVFGRD96 40.0 215 65 0 3.65 0.2087 WVFGRD96 42.0 215 65 0 3.67 0.2050 WVFGRD96 44.0 215 65 -5 3.70 0.2002 WVFGRD96 46.0 220 65 0 3.73 0.1979 WVFGRD96 48.0 220 65 0 3.75 0.1985 WVFGRD96 50.0 220 65 0 3.76 0.1997 WVFGRD96 52.0 220 70 0 3.77 0.2054 WVFGRD96 54.0 225 70 5 3.80 0.2137 WVFGRD96 56.0 225 70 5 3.82 0.2267 WVFGRD96 58.0 225 70 5 3.84 0.2402 WVFGRD96 60.0 225 75 5 3.84 0.2533 WVFGRD96 62.0 225 75 5 3.86 0.2667 WVFGRD96 64.0 225 75 5 3.87 0.2779 WVFGRD96 66.0 225 70 10 3.88 0.2856 WVFGRD96 68.0 225 70 10 3.88 0.2940 WVFGRD96 70.0 225 70 10 3.89 0.2987 WVFGRD96 72.0 225 70 10 3.90 0.3074 WVFGRD96 74.0 225 70 15 3.89 0.3165 WVFGRD96 76.0 225 70 15 3.90 0.3264 WVFGRD96 78.0 225 70 15 3.91 0.3329 WVFGRD96 80.0 225 70 15 3.91 0.3371 WVFGRD96 82.0 225 70 15 3.91 0.3399 WVFGRD96 84.0 225 70 15 3.92 0.3408 WVFGRD96 86.0 225 70 15 3.92 0.3413 WVFGRD96 88.0 225 70 15 3.92 0.3421 WVFGRD96 90.0 45 65 40 3.86 0.3486 WVFGRD96 92.0 60 60 40 3.89 0.3902 WVFGRD96 94.0 60 60 40 3.91 0.4336 WVFGRD96 96.0 60 60 35 3.91 0.4632 WVFGRD96 98.0 60 60 35 3.92 0.4815 WVFGRD96 100.0 60 60 35 3.93 0.4967 WVFGRD96 102.0 60 60 35 3.93 0.5020 WVFGRD96 104.0 60 60 35 3.93 0.5060 WVFGRD96 106.0 60 60 35 3.93 0.5070 WVFGRD96 108.0 60 60 35 3.94 0.5116 WVFGRD96 110.0 60 60 35 3.94 0.5130 WVFGRD96 112.0 60 55 30 3.93 0.5162 WVFGRD96 114.0 60 55 30 3.93 0.5172 WVFGRD96 116.0 60 55 30 3.93 0.5196 WVFGRD96 118.0 60 55 30 3.93 0.5202 WVFGRD96 120.0 60 55 30 3.93 0.5220 WVFGRD96 122.0 60 55 30 3.94 0.5238 WVFGRD96 124.0 60 55 30 3.94 0.5251 WVFGRD96 126.0 60 55 30 3.94 0.5261 WVFGRD96 128.0 60 55 30 3.94 0.5251 WVFGRD96 130.0 60 55 30 3.95 0.5266 WVFGRD96 132.0 60 55 30 3.95 0.5262 WVFGRD96 134.0 60 55 30 3.95 0.5269 WVFGRD96 136.0 60 55 30 3.95 0.5256 WVFGRD96 138.0 60 55 30 3.95 0.5261 WVFGRD96 140.0 60 55 30 3.96 0.5270 WVFGRD96 142.0 60 55 30 3.96 0.5249 WVFGRD96 144.0 60 55 30 3.96 0.5253 WVFGRD96 146.0 60 55 30 3.96 0.5249 WVFGRD96 148.0 60 50 30 3.95 0.5246 WVFGRD96 150.0 60 50 30 3.96 0.5257 WVFGRD96 152.0 60 50 30 3.96 0.5253 WVFGRD96 154.0 60 50 30 3.96 0.5253 WVFGRD96 156.0 60 50 30 3.96 0.5264 WVFGRD96 158.0 60 50 30 3.97 0.5264 WVFGRD96 160.0 60 50 30 3.97 0.5261 WVFGRD96 162.0 60 50 30 3.97 0.5262 WVFGRD96 164.0 60 50 30 3.97 0.5270 WVFGRD96 166.0 60 50 30 3.97 0.5270 WVFGRD96 168.0 60 50 30 3.98 0.5270
The best solution is
WVFGRD96 168.0 60 50 30 3.98 0.5270
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00