The ANSS event ID is ak019ddh6cfc and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019ddh6cfc/executive.
2019/10/18 13:08:59 66.313 -157.253 7.5 3.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/10/18 13:08:59:0 66.31 -157.25 7.5 3.1 Alaska Stations used: AK.ANM AK.BPAW AK.COLD AK.H21K AK.I23K AK.J19K AK.J20K AK.KTH AK.MLY AK.NEA2 TA.C18K TA.D20K TA.D22K TA.E18K TA.E19K TA.E21K TA.E22K TA.E23K TA.F15K TA.F19K TA.G16K TA.G18K TA.G21K TA.H17K TA.H18K TA.H19K TA.I17K TA.I20K TA.I21K TA.J16K TA.J18K TA.K17K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.03e+23 dyne-cm Mw = 5.12 Z = 10 km Plane Strike Dip Rake NP1 249 81 -155 NP2 155 65 -10 Principal Axes: Axis Value Plunge Azimuth T 6.03e+23 11 20 N 0.00e+00 63 268 P -6.03e+23 24 115 Moment Tensor: (dyne-cm) Component Value Mxx 4.26e+23 Mxy 3.76e+23 Mxz 1.99e+23 Myy -3.46e+23 Myz -1.67e+23 Mzz -8.02e+22 ############ --############## T ### -----############## ###### -----######################### -------########################### ---------########################### ----------############################ -----------######################------- ------------##############-------------- -------------#########-------------------- --------------###------------------------- -------------#---------------------------- ---------######--------------------------- -----##########------------------ ---- --##############----------------- P ---- ################---------------- --- #################------------------- #################----------------- #################------------- ##################---------- #################----- ############## Global CMT Convention Moment Tensor: R T P -8.02e+22 1.99e+23 1.67e+23 1.99e+23 4.26e+23 -3.76e+23 1.67e+23 -3.76e+23 -3.46e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191018130859/index.html |
STK = 155 DIP = 65 RAKE = -10 MW = 5.12 HS = 10.0
The NDK file is 20191018130859.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2019/10/18 13:08:59:0 66.31 -157.25 7.5 3.1 Alaska Stations used: AK.ANM AK.BPAW AK.COLD AK.H21K AK.I23K AK.J19K AK.J20K AK.KTH AK.MLY AK.NEA2 TA.C18K TA.D20K TA.D22K TA.E18K TA.E19K TA.E21K TA.E22K TA.E23K TA.F15K TA.F19K TA.G16K TA.G18K TA.G21K TA.H17K TA.H18K TA.H19K TA.I17K TA.I20K TA.I21K TA.J16K TA.J18K TA.K17K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.03e+23 dyne-cm Mw = 5.12 Z = 10 km Plane Strike Dip Rake NP1 249 81 -155 NP2 155 65 -10 Principal Axes: Axis Value Plunge Azimuth T 6.03e+23 11 20 N 0.00e+00 63 268 P -6.03e+23 24 115 Moment Tensor: (dyne-cm) Component Value Mxx 4.26e+23 Mxy 3.76e+23 Mxz 1.99e+23 Myy -3.46e+23 Myz -1.67e+23 Mzz -8.02e+22 ############ --############## T ### -----############## ###### -----######################### -------########################### ---------########################### ----------############################ -----------######################------- ------------##############-------------- -------------#########-------------------- --------------###------------------------- -------------#---------------------------- ---------######--------------------------- -----##########------------------ ---- --##############----------------- P ---- ################---------------- --- #################------------------- #################----------------- #################------------- ##################---------- #################----- ############## Global CMT Convention Moment Tensor: R T P -8.02e+22 1.99e+23 1.67e+23 1.99e+23 4.26e+23 -3.76e+23 1.67e+23 -3.76e+23 -3.46e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20191018130859/index.html |
Regional Moment Tensor (Mwr) Moment 7.126e+16 N-m Magnitude 5.17 Mwr Depth 8.0 km Percent DC 77% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 155 59 -18 NP2 254 75 -147 Principal Axes Axis Value Plunge Azimuth T 6.650e+16 N-m 11 22 N 0.872e+16 N-m 54 276 P -7.522e+16 N-m 33 119 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 75 5 4.65 0.3347 WVFGRD96 2.0 165 60 25 4.84 0.4579 WVFGRD96 3.0 160 70 10 4.87 0.5081 WVFGRD96 4.0 160 65 0 4.92 0.5551 WVFGRD96 5.0 335 60 -10 4.96 0.5961 WVFGRD96 6.0 155 65 -10 4.99 0.6278 WVFGRD96 7.0 155 70 -5 5.02 0.6542 WVFGRD96 8.0 155 65 -10 5.07 0.6786 WVFGRD96 9.0 155 65 -10 5.10 0.6891 WVFGRD96 10.0 155 65 -10 5.12 0.6927 WVFGRD96 11.0 160 70 -5 5.14 0.6921 WVFGRD96 12.0 160 70 0 5.16 0.6883 WVFGRD96 13.0 160 70 5 5.17 0.6800 WVFGRD96 14.0 160 70 5 5.18 0.6681 WVFGRD96 15.0 160 70 5 5.20 0.6536 WVFGRD96 16.0 160 70 5 5.21 0.6376 WVFGRD96 17.0 160 70 5 5.21 0.6201 WVFGRD96 18.0 340 70 10 5.22 0.6012 WVFGRD96 19.0 340 70 10 5.23 0.5859 WVFGRD96 20.0 340 70 10 5.23 0.5703 WVFGRD96 21.0 340 70 15 5.24 0.5561 WVFGRD96 22.0 340 70 15 5.25 0.5420 WVFGRD96 23.0 340 70 15 5.25 0.5277 WVFGRD96 24.0 340 70 15 5.26 0.5140 WVFGRD96 25.0 340 70 15 5.26 0.5018 WVFGRD96 26.0 340 70 15 5.26 0.4888 WVFGRD96 27.0 340 70 15 5.27 0.4774 WVFGRD96 28.0 340 70 15 5.27 0.4660 WVFGRD96 29.0 340 70 15 5.27 0.4535
The best solution is
WVFGRD96 10.0 155 65 -10 5.12 0.6927
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00