Location

Location ANSS

The ANSS event ID is us70005p48 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us70005p48/executive.

2019/09/30 21:47:12 32.924 -100.862 5.0 4 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/09/30 21:47:12:0  32.92 -100.86   5.0 4.0 Texas
 
 Stations used:
   4T.NM01 4T.NM03 IM.TX31 IU.ANMO N4.ABTX N4.MSTX N4.WHTX 
   N4.Z35B O2.POCA O2.SC04 O2.SC10 O2.SC11 O2.SC12 O2.SC14 
   O2.SC15 O2.SC20 TX.ALPN TX.BRDY TX.DKNS TX.FW01 TX.FW02 
   TX.FW03 TX.FW05 TX.FW06 TX.FW11 TX.FW13 TX.FW15 TX.MB01 
   TX.MB04 TX.MB05 TX.MB06 TX.MB07 TX.MNHN TX.ODSA TX.OZNA 
   TX.PB16 TX.PB27 TX.PLPT TX.POST TX.RTBA TX.SAND TX.SGCY 
   TX.SMWD TX.SN08 TX.SN10 TX.WTFS 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 7.50e+21 dyne-cm
  Mw = 3.85 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      202    85   -155
   NP2      110    65    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.50e+21     14     333
    N   0.00e+00     65     212
    P  -7.50e+21     21      69

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.79e+21
       Mxy    -5.03e+21
       Mxz     6.85e+20
       Myy    -4.29e+21
       Myz    -3.11e+21
       Mzz    -5.01e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 #   ##############----              
              #### T #############--------           
             #####   ############----------          
           #####################-------------        
          #####################---------------       
         #####################------------   --      
        -####################------------- P ---     
        --###################-------------   ---     
       -----################---------------------    
       -------#############----------------------    
       ---------##########-----------------------    
       ------------#######-----------------------    
        ---------------##-----------------------     
        ----------------###---------------------     
         ---------------############-------####      
          -------------#######################       
           -----------#######################        
             ---------#####################          
              -------#####################           
                 ----##################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.01e+20   6.85e+20   3.11e+21 
  6.85e+20   4.79e+21   5.03e+21 
  3.11e+21   5.03e+21  -4.29e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190930214712/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 110
      DIP = 65
     RAKE = -5
       MW = 3.85
       HS = 9.0

The NDK file is 20190930214712.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2019/09/30 21:47:12:0  32.92 -100.86   5.0 4.0 Texas
 
 Stations used:
   4T.NM01 4T.NM03 IM.TX31 IU.ANMO N4.ABTX N4.MSTX N4.WHTX 
   N4.Z35B O2.POCA O2.SC04 O2.SC10 O2.SC11 O2.SC12 O2.SC14 
   O2.SC15 O2.SC20 TX.ALPN TX.BRDY TX.DKNS TX.FW01 TX.FW02 
   TX.FW03 TX.FW05 TX.FW06 TX.FW11 TX.FW13 TX.FW15 TX.MB01 
   TX.MB04 TX.MB05 TX.MB06 TX.MB07 TX.MNHN TX.ODSA TX.OZNA 
   TX.PB16 TX.PB27 TX.PLPT TX.POST TX.RTBA TX.SAND TX.SGCY 
   TX.SMWD TX.SN08 TX.SN10 TX.WTFS 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 7.50e+21 dyne-cm
  Mw = 3.85 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      202    85   -155
   NP2      110    65    -5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.50e+21     14     333
    N   0.00e+00     65     212
    P  -7.50e+21     21      69

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.79e+21
       Mxy    -5.03e+21
       Mxz     6.85e+20
       Myy    -4.29e+21
       Myz    -3.11e+21
       Mzz    -5.01e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 #   ##############----              
              #### T #############--------           
             #####   ############----------          
           #####################-------------        
          #####################---------------       
         #####################------------   --      
        -####################------------- P ---     
        --###################-------------   ---     
       -----################---------------------    
       -------#############----------------------    
       ---------##########-----------------------    
       ------------#######-----------------------    
        ---------------##-----------------------     
        ----------------###---------------------     
         ---------------############-------####      
          -------------#######################       
           -----------#######################        
             ---------#####################          
              -------#####################           
                 ----##################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.01e+20   6.85e+20   3.11e+21 
  6.85e+20   4.79e+21   5.03e+21 
  3.11e+21   5.03e+21  -4.29e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190930214712/index.html
	
Regional Moment Tensor (Mwr)
Moment 1.079e+15 N-m
Magnitude 3.96 Mwr
Depth 4.0 km
Percent DC 69%
Half Duration -
Catalog US
Data Source US 1
Contributor US 1

Nodal Planes
Plane Strike Dip Rake
NP1 205 73 -153
NP2 106 64 -19

Principal Axes
Axis Value Plunge Azimuth
T 1.157e+15 N-m 6 334
N -0.179e+15 N-m 58 234
P -0.978e+15 N-m 31 67

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    25    90   -10   3.49 0.3279
WVFGRD96    2.0   200    90   -20   3.61 0.3906
WVFGRD96    3.0    20    90    30   3.68 0.4185
WVFGRD96    4.0    20    90    25   3.70 0.4328
WVFGRD96    5.0   105    60   -15   3.74 0.4471
WVFGRD96    6.0   110    65    -5   3.76 0.4597
WVFGRD96    7.0   110    70    -5   3.79 0.4704
WVFGRD96    8.0   110    65    -5   3.83 0.4803
WVFGRD96    9.0   110    65    -5   3.85 0.4813
WVFGRD96   10.0   110    70    -5   3.86 0.4785
WVFGRD96   11.0   110    75   -10   3.87 0.4745
WVFGRD96   12.0   110    75   -10   3.88 0.4713
WVFGRD96   13.0   110    75   -10   3.90 0.4661
WVFGRD96   14.0   110    75   -10   3.91 0.4599
WVFGRD96   15.0   110    75    10   3.92 0.4538
WVFGRD96   16.0   110    75    10   3.93 0.4480
WVFGRD96   17.0   110    75    10   3.94 0.4417
WVFGRD96   18.0   290    75   -10   3.95 0.4371
WVFGRD96   19.0   290    75   -10   3.96 0.4313
WVFGRD96   20.0   290    75   -10   3.97 0.4264
WVFGRD96   21.0   290    80   -15   3.98 0.4214
WVFGRD96   22.0   290    80   -15   3.98 0.4161
WVFGRD96   23.0   290    80   -15   3.99 0.4125
WVFGRD96   24.0   290    80   -15   4.00 0.4092
WVFGRD96   25.0   290    80   -15   4.01 0.4060
WVFGRD96   26.0   285    75   -15   4.01 0.4031
WVFGRD96   27.0   285    75   -15   4.01 0.4007
WVFGRD96   28.0   285    75   -15   4.02 0.3986
WVFGRD96   29.0   285    75   -15   4.03 0.3964

The best solution is

WVFGRD96    9.0   110    65    -5   3.85 0.4813

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 04:42:21 PM CDT 2024