The ANSS event ID is ak019b11fo13 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019b11fo13/executive.
2019/08/28 07:48:25 61.322 -150.075 40.9 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/08/28 07:48:25:0 61.32 -150.07 40.9 4.1 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.CUT AK.DHY AK.FID AK.FIRE AK.GHO AK.GLI AK.HOM AK.KNK AK.KTH AK.MCK AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RND AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD AK.VRDI AT.PMR AV.SPU AV.STLK TA.L19K TA.M19K TA.M20K TA.M22K TA.O22K TA.P19K Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.91e+22 dyne-cm Mw = 4.12 Z = 44 km Plane Strike Dip Rake NP1 205 85 -60 NP2 304 30 -170 Principal Axes: Axis Value Plunge Azimuth T 1.91e+22 33 270 N 0.00e+00 30 22 P -1.91e+22 42 143 Moment Tensor: (dyne-cm) Component Value Mxx -6.76e+21 Mxy 5.00e+21 Mxz 7.62e+21 Myy 9.62e+21 Myz -1.44e+22 Mzz -2.87e+21 -------------- -------------------### ------#######--------####### -###################-######### ######################---######### ######################-------####### ######################----------###### ######################------------###### #####################--------------##### #####################----------------##### ###### ###########------------------#### ###### T ##########--------------------### ###### #########---------------------### #################---------------------## ################----------------------## ##############----------- ---------# ############------------ P --------- ##########------------- -------- ########---------------------- ######---------------------- ###------------------- -------------- Global CMT Convention Moment Tensor: R T P -2.87e+21 7.62e+21 1.44e+22 7.62e+21 -6.76e+21 -5.00e+21 1.44e+22 -5.00e+21 9.62e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190828074825/index.html |
STK = 205 DIP = 85 RAKE = -60 MW = 4.12 HS = 44.0
The NDK file is 20190828074825.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 125 65 15 3.32 0.2519 WVFGRD96 4.0 120 65 0 3.42 0.3037 WVFGRD96 6.0 300 65 0 3.49 0.3308 WVFGRD96 8.0 120 70 -20 3.57 0.3465 WVFGRD96 10.0 120 70 -20 3.62 0.3460 WVFGRD96 12.0 120 70 -20 3.65 0.3389 WVFGRD96 14.0 235 70 20 3.69 0.3382 WVFGRD96 16.0 235 70 20 3.72 0.3395 WVFGRD96 18.0 235 65 20 3.75 0.3456 WVFGRD96 20.0 235 65 20 3.78 0.3631 WVFGRD96 22.0 230 65 20 3.81 0.3849 WVFGRD96 24.0 230 65 20 3.83 0.4060 WVFGRD96 26.0 30 85 20 3.85 0.4232 WVFGRD96 28.0 30 80 25 3.87 0.4442 WVFGRD96 30.0 30 80 25 3.89 0.4620 WVFGRD96 32.0 30 80 25 3.91 0.4739 WVFGRD96 34.0 30 90 55 3.95 0.5013 WVFGRD96 36.0 30 90 55 3.97 0.5346 WVFGRD96 38.0 210 90 -55 3.98 0.5589 WVFGRD96 40.0 205 85 -65 4.10 0.5702 WVFGRD96 42.0 30 90 60 4.11 0.5696 WVFGRD96 44.0 205 85 -60 4.12 0.5731 WVFGRD96 46.0 205 85 -60 4.13 0.5713 WVFGRD96 48.0 205 85 -60 4.14 0.5679 WVFGRD96 50.0 200 80 -60 4.15 0.5638 WVFGRD96 52.0 205 85 -55 4.15 0.5586 WVFGRD96 54.0 205 85 -55 4.16 0.5536 WVFGRD96 56.0 205 85 -55 4.17 0.5462 WVFGRD96 58.0 205 85 -55 4.17 0.5407 WVFGRD96 60.0 205 85 -55 4.18 0.5328 WVFGRD96 62.0 30 85 50 4.18 0.5256 WVFGRD96 64.0 25 90 70 4.19 0.5246 WVFGRD96 66.0 205 90 -70 4.20 0.5249 WVFGRD96 68.0 25 90 65 4.20 0.5249 WVFGRD96 70.0 25 90 65 4.20 0.5239 WVFGRD96 72.0 25 90 65 4.21 0.5234 WVFGRD96 74.0 25 90 65 4.21 0.5201 WVFGRD96 76.0 25 90 65 4.21 0.5179 WVFGRD96 78.0 25 90 65 4.21 0.5147 WVFGRD96 80.0 205 90 -65 4.22 0.5094 WVFGRD96 82.0 25 90 65 4.22 0.5059 WVFGRD96 84.0 205 90 -65 4.22 0.5002 WVFGRD96 86.0 25 90 60 4.22 0.4936 WVFGRD96 88.0 205 90 -60 4.22 0.4868 WVFGRD96 90.0 205 90 -60 4.22 0.4763 WVFGRD96 92.0 25 90 60 4.22 0.4650 WVFGRD96 94.0 205 90 -60 4.22 0.4485 WVFGRD96 96.0 25 90 60 4.22 0.4371 WVFGRD96 98.0 40 70 30 4.24 0.4256 WVFGRD96 100.0 205 90 -55 4.22 0.4247 WVFGRD96 102.0 205 90 -55 4.22 0.4017 WVFGRD96 104.0 30 85 50 4.21 0.3609 WVFGRD96 106.0 225 90 15 4.23 0.3419 WVFGRD96 108.0 45 90 -15 4.23 0.3271 WVFGRD96 110.0 225 90 15 4.23 0.3143 WVFGRD96 112.0 45 90 -15 4.23 0.3083 WVFGRD96 114.0 45 90 -15 4.23 0.3006 WVFGRD96 116.0 225 90 15 4.23 0.2916 WVFGRD96 118.0 45 90 -15 4.23 0.2832 WVFGRD96 120.0 45 90 -15 4.23 0.2722 WVFGRD96 122.0 45 90 -15 4.23 0.2624 WVFGRD96 124.0 225 90 20 4.23 0.2563 WVFGRD96 126.0 30 85 -40 4.20 0.2495 WVFGRD96 128.0 30 85 -40 4.20 0.2434 WVFGRD96 130.0 30 85 -40 4.19 0.2317 WVFGRD96 132.0 30 85 -40 4.18 0.2137 WVFGRD96 134.0 30 80 -35 4.18 0.1939 WVFGRD96 136.0 40 80 -25 4.19 0.1744 WVFGRD96 138.0 40 75 -25 4.17 0.1559 WVFGRD96 140.0 40 80 -25 4.16 0.1417 WVFGRD96 142.0 40 80 -25 4.15 0.1249 WVFGRD96 144.0 245 65 70 4.12 0.1042 WVFGRD96 146.0 135 75 5 4.14 0.0994 WVFGRD96 148.0 135 70 0 4.13 0.0946
The best solution is
WVFGRD96 44.0 205 85 -60 4.12 0.5731
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.05 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00