The ANSS event ID is ak019azmohto and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak019azmohto/executive.
2019/08/27 22:23:39 63.238 -149.852 95.8 3.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/08/27 22:23:39:0 63.24 -149.85 95.8 3.5 Alaska Stations used: AK.CUT AK.GHO AK.HDA AK.MCK AK.PPLA AK.RND AK.SCM AK.SSN AK.TRF AT.PMR TA.M20K TA.M22K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.62e+21 dyne-cm Mw = 3.71 Z = 112 km Plane Strike Dip Rake NP1 60 75 25 NP2 323 66 164 Principal Axes: Axis Value Plunge Azimuth T 4.62e+21 28 283 N 0.00e+00 61 89 P -4.62e+21 6 190 Moment Tensor: (dyne-cm) Component Value Mxx -4.24e+21 Mxy -1.60e+21 Mxz 9.23e+20 Myy 3.26e+21 Myz -1.79e+21 Mzz 9.77e+20 -------------- ---------------------- ####------------------------ #########--------------------- ##############-------------------- #################------------------- ####################----------------## #######################------------##### #### #################---------####### ##### T ###################-----########## ##### ####################-############# ###########################--############# ########################------############ ####################----------########## ################---------------######### ##########--------------------######## ##----------------------------###### -----------------------------##### ---------------------------### ---------------------------# ------ ------------- -- P --------- Global CMT Convention Moment Tensor: R T P 9.77e+20 9.23e+20 1.79e+21 9.23e+20 -4.24e+21 1.60e+21 1.79e+21 1.60e+21 3.26e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190827222339/index.html |
STK = 60 DIP = 75 RAKE = 25 MW = 3.71 HS = 112.0
The NDK file is 20190827222339.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 130 50 -50 2.78 0.1968 WVFGRD96 4.0 330 75 25 2.80 0.2134 WVFGRD96 6.0 150 70 20 2.88 0.2347 WVFGRD96 8.0 330 75 30 2.96 0.2460 WVFGRD96 10.0 330 70 30 3.01 0.2462 WVFGRD96 12.0 330 70 30 3.04 0.2365 WVFGRD96 14.0 5 75 -30 3.21 0.2369 WVFGRD96 16.0 10 75 -25 3.23 0.2352 WVFGRD96 18.0 10 75 -20 3.25 0.2307 WVFGRD96 20.0 55 55 15 3.16 0.2320 WVFGRD96 22.0 55 55 15 3.19 0.2395 WVFGRD96 24.0 55 55 20 3.22 0.2505 WVFGRD96 26.0 55 55 20 3.24 0.2651 WVFGRD96 28.0 60 50 20 3.28 0.2831 WVFGRD96 30.0 60 50 20 3.30 0.3032 WVFGRD96 32.0 60 50 20 3.33 0.3237 WVFGRD96 34.0 60 55 20 3.34 0.3474 WVFGRD96 36.0 60 55 20 3.36 0.3725 WVFGRD96 38.0 60 60 20 3.38 0.3890 WVFGRD96 40.0 65 55 25 3.45 0.4006 WVFGRD96 42.0 60 60 20 3.46 0.4084 WVFGRD96 44.0 60 55 25 3.50 0.4222 WVFGRD96 46.0 60 60 25 3.51 0.4379 WVFGRD96 48.0 65 60 40 3.52 0.4538 WVFGRD96 50.0 65 65 45 3.53 0.4755 WVFGRD96 52.0 65 65 45 3.54 0.4916 WVFGRD96 54.0 65 65 45 3.55 0.5037 WVFGRD96 56.0 65 65 40 3.56 0.5133 WVFGRD96 58.0 65 65 40 3.56 0.5224 WVFGRD96 60.0 65 65 40 3.57 0.5325 WVFGRD96 62.0 60 70 35 3.57 0.5413 WVFGRD96 64.0 60 70 35 3.58 0.5482 WVFGRD96 66.0 60 70 30 3.59 0.5551 WVFGRD96 68.0 60 70 30 3.60 0.5597 WVFGRD96 70.0 60 70 30 3.60 0.5650 WVFGRD96 72.0 60 70 30 3.61 0.5703 WVFGRD96 74.0 60 70 30 3.61 0.5754 WVFGRD96 76.0 60 70 30 3.62 0.5780 WVFGRD96 78.0 60 70 30 3.62 0.5811 WVFGRD96 80.0 60 70 25 3.64 0.5850 WVFGRD96 82.0 60 70 25 3.64 0.5866 WVFGRD96 84.0 60 70 25 3.65 0.5900 WVFGRD96 86.0 60 75 25 3.65 0.5946 WVFGRD96 88.0 60 75 25 3.65 0.5953 WVFGRD96 90.0 60 75 25 3.66 0.5982 WVFGRD96 92.0 60 75 25 3.66 0.5988 WVFGRD96 94.0 60 75 25 3.67 0.6022 WVFGRD96 96.0 60 75 25 3.67 0.6030 WVFGRD96 98.0 60 75 25 3.68 0.6019 WVFGRD96 100.0 60 75 25 3.68 0.6048 WVFGRD96 102.0 60 75 25 3.69 0.6046 WVFGRD96 104.0 60 75 25 3.69 0.6038 WVFGRD96 106.0 60 75 25 3.70 0.6050 WVFGRD96 108.0 60 75 25 3.70 0.6059 WVFGRD96 110.0 60 75 25 3.71 0.6036 WVFGRD96 112.0 60 75 25 3.71 0.6062 WVFGRD96 114.0 60 75 25 3.71 0.6036 WVFGRD96 116.0 60 75 25 3.72 0.6050 WVFGRD96 118.0 60 75 25 3.72 0.6037 WVFGRD96 120.0 60 75 25 3.73 0.6019 WVFGRD96 122.0 60 75 25 3.73 0.6030 WVFGRD96 124.0 60 75 25 3.73 0.5987 WVFGRD96 126.0 60 80 25 3.73 0.6004 WVFGRD96 128.0 65 75 25 3.74 0.5952 WVFGRD96 130.0 65 75 25 3.74 0.5970 WVFGRD96 132.0 65 75 25 3.75 0.5938 WVFGRD96 134.0 65 75 25 3.75 0.5949 WVFGRD96 136.0 65 75 25 3.75 0.5923 WVFGRD96 138.0 65 75 25 3.76 0.5909 WVFGRD96 140.0 65 75 25 3.76 0.5891 WVFGRD96 142.0 65 75 25 3.76 0.5877 WVFGRD96 144.0 65 75 25 3.77 0.5851 WVFGRD96 146.0 65 75 25 3.77 0.5847 WVFGRD96 148.0 65 75 25 3.77 0.5795
The best solution is
WVFGRD96 112.0 60 75 25 3.71 0.6062
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00