The ANSS event ID is us600056mz and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us600056mz/executive.
2019/08/18 08:45:29 38.015 -98.005 5.0 4.1 Kansas
USGS/SLU Moment Tensor Solution ENS 2019/08/18 08:45:29:0 38.01 -98.00 5.0 4.1 Kansas Stations used: AG.HHAR C0.LAMA GM.IWM01 GS.KAN14 GS.OK029 GS.OK038 GS.OK052 N4.BGNE N4.N35B N4.P38B N4.R32B N4.T35B N4.TUL3 N4.U38B O2.CHAN O2.CRES O2.DRUM O2.KS01 O2.PERK O2.PERY O2.SC04 O2.SC11 O2.SC15 O2.SMNL OK.AMES OK.BLOK OK.CHOK OK.CROK OK.HTCH OK.NOKA US.CBKS Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 3 km Plane Strike Dip Rake NP1 120 85 -20 NP2 212 70 -175 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 10 168 N 0.00e+00 69 287 P -1.78e+22 18 74 Moment Tensor: (dyne-cm) Component Value Mxx 1.52e+22 Mxy -7.87e+21 Mxz -4.46e+21 Myy -1.42e+22 Myz -4.26e+21 Mzz -1.06e+21 ############## ###################### #####################------- ####################---------- ####################-------------- ###################----------------- ----###############------------------- -------###########----------------- -- ----------#######------------------ P -- --------------###------------------- --- ----------------#------------------------- ---------------#####---------------------- --------------#########------------------- ------------##############-------------- -----------##################----------- ---------#######################------ --------###########################- ------############################ ----########################## ---############## ######## ############## T ##### ########## # Global CMT Convention Moment Tensor: R T P -1.06e+21 -4.46e+21 4.26e+21 -4.46e+21 1.52e+22 7.87e+21 4.26e+21 7.87e+21 -1.42e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190818084529/index.html |
STK = 120 DIP = 85 RAKE = -20 MW = 4.10 HS = 3.0
The NDK file is 20190818084529.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2019/08/18 08:45:29:0 38.01 -98.00 5.0 4.1 Kansas Stations used: AG.HHAR C0.LAMA GM.IWM01 GS.KAN14 GS.OK029 GS.OK038 GS.OK052 N4.BGNE N4.N35B N4.P38B N4.R32B N4.T35B N4.TUL3 N4.U38B O2.CHAN O2.CRES O2.DRUM O2.KS01 O2.PERK O2.PERY O2.SC04 O2.SC11 O2.SC15 O2.SMNL OK.AMES OK.BLOK OK.CHOK OK.CROK OK.HTCH OK.NOKA US.CBKS Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.78e+22 dyne-cm Mw = 4.10 Z = 3 km Plane Strike Dip Rake NP1 120 85 -20 NP2 212 70 -175 Principal Axes: Axis Value Plunge Azimuth T 1.78e+22 10 168 N 0.00e+00 69 287 P -1.78e+22 18 74 Moment Tensor: (dyne-cm) Component Value Mxx 1.52e+22 Mxy -7.87e+21 Mxz -4.46e+21 Myy -1.42e+22 Myz -4.26e+21 Mzz -1.06e+21 ############## ###################### #####################------- ####################---------- ####################-------------- ###################----------------- ----###############------------------- -------###########----------------- -- ----------#######------------------ P -- --------------###------------------- --- ----------------#------------------------- ---------------#####---------------------- --------------#########------------------- ------------##############-------------- -----------##################----------- ---------#######################------ --------###########################- ------############################ ----########################## ---############## ######## ############## T ##### ########## # Global CMT Convention Moment Tensor: R T P -1.06e+21 -4.46e+21 4.26e+21 -4.46e+21 1.52e+22 7.87e+21 4.26e+21 7.87e+21 -1.42e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190818084529/index.html |
Regional Moment Tensor (Mwr) Moment 1.560e+15 N-m Magnitude 4.06 Mwr Depth 3.0 km Percent DC 67% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 215 79 -166 NP2 122 76 -11 Principal Axes Axis Value Plunge Azimuth T 1.679e+15 N-m 2 348 N -0.274e+15 N-m 72 251 P -1.405e+15 N-m 18 79 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 305 70 20 4.07 0.4194 WVFGRD96 2.0 120 80 -15 4.08 0.4454 WVFGRD96 3.0 120 85 -20 4.10 0.4507 WVFGRD96 4.0 120 90 -20 4.12 0.4487 WVFGRD96 5.0 305 80 15 4.13 0.4489 WVFGRD96 6.0 300 85 20 4.14 0.4491 WVFGRD96 7.0 300 80 15 4.15 0.4488 WVFGRD96 8.0 300 85 15 4.16 0.4471 WVFGRD96 9.0 300 85 15 4.18 0.4435 WVFGRD96 10.0 120 80 15 4.19 0.4387 WVFGRD96 11.0 120 80 15 4.20 0.4316 WVFGRD96 12.0 120 85 20 4.21 0.4219 WVFGRD96 13.0 120 85 20 4.22 0.4096 WVFGRD96 14.0 120 85 20 4.23 0.3951 WVFGRD96 15.0 120 85 20 4.23 0.3789 WVFGRD96 16.0 120 85 20 4.24 0.3617 WVFGRD96 17.0 120 85 20 4.24 0.3445 WVFGRD96 18.0 300 90 -25 4.25 0.3268 WVFGRD96 19.0 125 85 25 4.25 0.3112 WVFGRD96 20.0 125 85 30 4.27 0.2972 WVFGRD96 21.0 35 70 15 4.27 0.2893 WVFGRD96 22.0 35 70 15 4.28 0.2879 WVFGRD96 23.0 35 70 15 4.29 0.2864 WVFGRD96 24.0 35 70 15 4.29 0.2856 WVFGRD96 25.0 35 70 15 4.30 0.2847 WVFGRD96 26.0 35 70 15 4.31 0.2851 WVFGRD96 27.0 35 70 15 4.32 0.2852 WVFGRD96 28.0 35 70 15 4.33 0.2854 WVFGRD96 29.0 35 70 15 4.34 0.2862
The best solution is
WVFGRD96 3.0 120 85 -20 4.10 0.4507
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00