The ANSS event ID is us600055xa and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us600055xa/executive.
2019/08/16 12:59:10 38.025 -97.983 5.0 4.2 Kansas
USGS/SLU Moment Tensor Solution ENS 2019/08/16 12:59:10:0 38.03 -97.98 5.0 4.2 Kansas Stations used: AG.HHAR C0.LAMA GM.IWM01 GS.KAN14 GS.OK029 GS.OK038 GS.OK052 N4.BGNE N4.KSCO N4.N35B N4.P38B N4.R32B N4.T35B N4.TUL3 O2.ARCA O2.CHAN O2.CRES O2.DRUM O2.KS01 O2.MRSH O2.PERK O2.PERY O2.POCA O2.SC04 O2.SC11 O2.SC15 O2.SMNL OK.AMES OK.BLOK OK.CHOK OK.CROK OK.CSTR OK.MOOR OK.NOKA US.CBKS US.WMOK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 5 km Plane Strike Dip Rake NP1 213 80 170 NP2 305 80 10 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 14 169 N 0.00e+00 76 350 P -3.31e+22 0 259 Moment Tensor: (dyne-cm) Component Value Mxx 2.89e+22 Mxy -1.19e+22 Mxz -7.67e+21 Myy -3.08e+22 Myz 1.54e+21 Mzz 1.97e+21 ############## ###################### #######################----- #######################------- #######################----------- ------################-------------- ----------############---------------- ---------------######------------------- ------------------##-------------------- --------------------#--------------------- -------------------#####------------------ ---------------##########--------------- P --------------#############------------- -------------################---------- -------------###################-------- -----------######################----- ---------#########################-- -------########################### -----######################### ---############# ######### ############# T ###### ######### ## Global CMT Convention Moment Tensor: R T P 1.97e+21 -7.67e+21 -1.54e+21 -7.67e+21 2.89e+22 1.19e+22 -1.54e+21 1.19e+22 -3.08e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190816125910/index.html |
STK = 305 DIP = 80 RAKE = 10 MW = 4.28 HS = 5.0
The NDK file is 20190816125910.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2019/08/16 12:59:10:0 38.03 -97.98 5.0 4.2 Kansas Stations used: AG.HHAR C0.LAMA GM.IWM01 GS.KAN14 GS.OK029 GS.OK038 GS.OK052 N4.BGNE N4.KSCO N4.N35B N4.P38B N4.R32B N4.T35B N4.TUL3 O2.ARCA O2.CHAN O2.CRES O2.DRUM O2.KS01 O2.MRSH O2.PERK O2.PERY O2.POCA O2.SC04 O2.SC11 O2.SC15 O2.SMNL OK.AMES OK.BLOK OK.CHOK OK.CROK OK.CSTR OK.MOOR OK.NOKA US.CBKS US.WMOK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.31e+22 dyne-cm Mw = 4.28 Z = 5 km Plane Strike Dip Rake NP1 213 80 170 NP2 305 80 10 Principal Axes: Axis Value Plunge Azimuth T 3.31e+22 14 169 N 0.00e+00 76 350 P -3.31e+22 0 259 Moment Tensor: (dyne-cm) Component Value Mxx 2.89e+22 Mxy -1.19e+22 Mxz -7.67e+21 Myy -3.08e+22 Myz 1.54e+21 Mzz 1.97e+21 ############## ###################### #######################----- #######################------- #######################----------- ------################-------------- ----------############---------------- ---------------######------------------- ------------------##-------------------- --------------------#--------------------- -------------------#####------------------ ---------------##########--------------- P --------------#############------------- -------------################---------- -------------###################-------- -----------######################----- ---------#########################-- -------########################### -----######################### ---############# ######### ############# T ###### ######### ## Global CMT Convention Moment Tensor: R T P 1.97e+21 -7.67e+21 -1.54e+21 -7.67e+21 2.89e+22 1.19e+22 -1.54e+21 1.19e+22 -3.08e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190816125910/index.html |
Regional Moment Tensor (Mwr) Moment 2.835e+15 N-m Magnitude 4.24 Mwr Depth 3.0 km Percent DC 90% Half Duration - Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 123 83 -13 NP2 215 77 -173 Principal Axes Axis Value Plunge Azimuth T 2.906e+15 N-m 4 169 N -0.148e+15 N-m 75 276 P -2.758e+15 N-m 14 78 |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 310 65 30 4.25 0.4038 WVFGRD96 2.0 125 90 -5 4.21 0.4333 WVFGRD96 3.0 125 90 -5 4.24 0.4504 WVFGRD96 4.0 125 90 -10 4.26 0.4516 WVFGRD96 5.0 305 80 10 4.28 0.4525 WVFGRD96 6.0 305 80 10 4.29 0.4511 WVFGRD96 7.0 305 80 10 4.30 0.4488 WVFGRD96 8.0 305 80 10 4.31 0.4452 WVFGRD96 9.0 305 80 10 4.32 0.4399 WVFGRD96 10.0 305 80 10 4.34 0.4336 WVFGRD96 11.0 125 85 15 4.35 0.4252 WVFGRD96 12.0 125 85 15 4.36 0.4155 WVFGRD96 13.0 125 85 15 4.37 0.4033 WVFGRD96 14.0 125 85 15 4.37 0.3899 WVFGRD96 15.0 300 90 -15 4.38 0.3721 WVFGRD96 16.0 125 85 15 4.38 0.3586 WVFGRD96 17.0 305 90 -20 4.39 0.3404 WVFGRD96 18.0 125 85 15 4.39 0.3252 WVFGRD96 19.0 215 85 -15 4.40 0.3203 WVFGRD96 20.0 210 75 -20 4.42 0.3187 WVFGRD96 21.0 210 75 -15 4.43 0.3180 WVFGRD96 22.0 210 70 -15 4.44 0.3177 WVFGRD96 23.0 210 75 -15 4.45 0.3165 WVFGRD96 24.0 210 70 -15 4.46 0.3168 WVFGRD96 25.0 210 70 -15 4.47 0.3156 WVFGRD96 26.0 210 70 -15 4.47 0.3151 WVFGRD96 27.0 215 90 -10 4.47 0.3146 WVFGRD96 28.0 215 90 -10 4.48 0.3145 WVFGRD96 29.0 215 90 -10 4.49 0.3159
The best solution is
WVFGRD96 5.0 305 80 10 4.28 0.4525
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00