The ANSS event ID is ak0199lpzfmd and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0199lpzfmd/executive.
2019/07/28 04:47:43 59.995 -152.680 103.9 3.8 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/07/28 04:47:43:0 59.99 -152.68 103.9 3.8 Alaska Stations used: AK.CAPN AK.CNP AK.HOM AK.RC01 AK.SKN AK.SLK AK.SSN AK.SWD AT.PMR AV.ILSW AV.SPU II.KDAK TA.L19K TA.M19K TA.M20K TA.M22K TA.N18K TA.N19K TA.O18K TA.O22K TA.P18K TA.P19K TA.Q19K TA.Q20K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 102 km Plane Strike Dip Rake NP1 65 65 30 NP2 321 63 152 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 38 284 N 0.00e+00 52 101 P -1.26e+22 1 193 Moment Tensor: (dyne-cm) Component Value Mxx -1.15e+22 Mxy -4.50e+21 Mxz 1.72e+21 Myy 6.71e+21 Myz -5.89e+21 Mzz 4.82e+21 -------------- ---------------------- ####------------------------ #########--------------------- ##############-------------------- ##################------------------ #####################----------------- #######################---------------## ###### ################-----------#### ####### T #################---------###### ####### ###################-----######## ##############################--########## #############################--########### #########################------######### #####################-----------######## ###############----------------####### -------------------------------##### ------------------------------#### ----------------------------## ---------------------------# ----- -------------- - P ---------- Global CMT Convention Moment Tensor: R T P 4.82e+21 1.72e+21 5.89e+21 1.72e+21 -1.15e+22 4.50e+21 5.89e+21 4.50e+21 6.71e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190728044743/index.html |
STK = 65 DIP = 65 RAKE = 30 MW = 4.00 HS = 102.0
The NDK file is 20190728044743.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 300 50 -55 3.12 0.2105 WVFGRD96 4.0 140 90 30 3.12 0.2411 WVFGRD96 6.0 320 90 -30 3.19 0.2615 WVFGRD96 8.0 320 85 -35 3.28 0.2732 WVFGRD96 10.0 325 90 -30 3.32 0.2724 WVFGRD96 12.0 325 90 -30 3.36 0.2648 WVFGRD96 14.0 325 90 -30 3.38 0.2505 WVFGRD96 16.0 325 90 -25 3.40 0.2311 WVFGRD96 18.0 50 70 15 3.42 0.2138 WVFGRD96 20.0 50 70 10 3.44 0.2136 WVFGRD96 22.0 220 60 -30 3.47 0.2194 WVFGRD96 24.0 220 60 -30 3.50 0.2317 WVFGRD96 26.0 225 65 -25 3.53 0.2497 WVFGRD96 28.0 225 65 -20 3.55 0.2694 WVFGRD96 30.0 225 65 -20 3.57 0.2862 WVFGRD96 32.0 225 65 -20 3.59 0.2991 WVFGRD96 34.0 235 85 -15 3.61 0.3067 WVFGRD96 36.0 235 90 -15 3.64 0.3127 WVFGRD96 38.0 55 90 15 3.67 0.3171 WVFGRD96 40.0 60 80 25 3.74 0.3250 WVFGRD96 42.0 240 90 -30 3.80 0.3347 WVFGRD96 44.0 60 85 30 3.82 0.3483 WVFGRD96 46.0 60 85 30 3.84 0.3643 WVFGRD96 48.0 65 80 25 3.87 0.3800 WVFGRD96 50.0 65 80 25 3.89 0.3975 WVFGRD96 52.0 65 75 25 3.90 0.4145 WVFGRD96 54.0 65 70 25 3.90 0.4309 WVFGRD96 56.0 65 70 30 3.92 0.4489 WVFGRD96 58.0 65 70 30 3.93 0.4677 WVFGRD96 60.0 65 70 30 3.94 0.4849 WVFGRD96 62.0 65 70 30 3.95 0.5001 WVFGRD96 64.0 65 70 30 3.96 0.5145 WVFGRD96 66.0 65 70 30 3.96 0.5270 WVFGRD96 68.0 65 70 30 3.97 0.5371 WVFGRD96 70.0 65 70 30 3.97 0.5474 WVFGRD96 72.0 65 70 30 3.98 0.5551 WVFGRD96 74.0 65 70 30 3.98 0.5607 WVFGRD96 76.0 60 70 30 3.97 0.5679 WVFGRD96 78.0 60 70 30 3.97 0.5737 WVFGRD96 80.0 60 70 30 3.98 0.5776 WVFGRD96 82.0 60 70 30 3.98 0.5827 WVFGRD96 84.0 60 70 30 3.98 0.5854 WVFGRD96 86.0 60 70 30 3.98 0.5879 WVFGRD96 88.0 60 70 30 3.99 0.5890 WVFGRD96 90.0 60 70 30 3.99 0.5896 WVFGRD96 92.0 60 70 30 3.99 0.5894 WVFGRD96 94.0 60 70 30 3.99 0.5895 WVFGRD96 96.0 60 70 30 3.99 0.5905 WVFGRD96 98.0 60 70 30 4.00 0.5901 WVFGRD96 100.0 65 65 30 4.00 0.5907 WVFGRD96 102.0 65 65 30 4.00 0.5909 WVFGRD96 104.0 60 65 25 3.99 0.5902 WVFGRD96 106.0 60 65 25 4.00 0.5888 WVFGRD96 108.0 60 65 25 4.00 0.5883 WVFGRD96 110.0 60 65 25 4.00 0.5864 WVFGRD96 112.0 60 65 25 4.00 0.5867 WVFGRD96 114.0 60 65 25 4.01 0.5855 WVFGRD96 116.0 60 65 25 4.01 0.5849 WVFGRD96 118.0 65 60 25 4.01 0.5839 WVFGRD96 120.0 65 60 25 4.01 0.5826 WVFGRD96 122.0 65 60 25 4.02 0.5810 WVFGRD96 124.0 65 60 25 4.02 0.5780 WVFGRD96 126.0 65 60 25 4.02 0.5764 WVFGRD96 128.0 60 65 20 4.02 0.5745 WVFGRD96 130.0 60 65 20 4.02 0.5738 WVFGRD96 132.0 60 65 20 4.03 0.5721 WVFGRD96 134.0 60 65 20 4.03 0.5700 WVFGRD96 136.0 60 65 20 4.03 0.5660 WVFGRD96 138.0 60 65 20 4.03 0.5655 WVFGRD96 140.0 60 65 20 4.03 0.5634 WVFGRD96 142.0 60 65 20 4.04 0.5608 WVFGRD96 144.0 60 65 20 4.04 0.5571 WVFGRD96 146.0 65 60 20 4.04 0.5559 WVFGRD96 148.0 65 60 20 4.04 0.5542
The best solution is
WVFGRD96 102.0 65 65 30 4.00 0.5909
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00