Location

Location ANSS

The ANSS event ID is ak0198ey5yyy and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0198ey5yyy/executive.

2019/07/02 18:17:07 66.270 -157.181 7.9 4.5 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/07/02 18:17:07:0  66.27 -157.18   7.9 4.5 Alaska
 
 Stations used:
   AK.ANM AK.BPAW AK.BWN AK.CAST AK.COLD AK.KTH AK.MLY AK.NEA2 
   AK.RDOG TA.B20K TA.B21K TA.C18K TA.C19K TA.D20K TA.D22K 
   TA.E18K TA.E19K TA.E21K TA.E22K TA.E23K TA.E24K TA.F15K 
   TA.F17K TA.F19K TA.F20K TA.F21K TA.F24K TA.G16K TA.G18K 
   TA.G19K TA.G21K TA.G23K TA.G24K TA.H17K TA.H18K TA.H19K 
   TA.H21K TA.H23K TA.H24K TA.I20K TA.I23K TA.J16K TA.J17K 
   TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      170    90    10
   NP2       80    80   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23      7      35
    N   0.00e+00     80     170
    P  -1.19e+23      7     305

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.00e+22
       Mxy     1.10e+23
       Mxz     3.58e+21
       Myy    -4.00e+22
       Myz     2.03e+22
       Mzz    -1.80e+15
                                                     
                                                     
                                                     
                                                     
                     ----##########                  
                 --------#############               
              -----------############# T #           
             -------------############   ##          
             -------------###################        
           P -------------####################       
         -   --------------####################      
        -------------------#####################     
        -------------------#####################     
       ---------------------###################--    
       ---------------------##############-------    
       ---------------------########-------------    
       --------------------#---------------------    
        #####################-------------------     
        #####################-------------------     
         ####################------------------      
          ####################----------------       
           ###################---------------        
             #################-------------          
              #################-----------           
                 ##############--------              
                     ##########----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.80e+15   3.58e+21  -2.03e+22 
  3.58e+21   4.00e+22  -1.10e+23 
 -2.03e+22  -1.10e+23  -4.00e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190702181707/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 170
      DIP = 90
     RAKE = 10
       MW = 4.65
       HS = 10.0

The NDK file is 20190702181707.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2019/07/02 18:17:07:0  66.27 -157.18   7.9 4.5 Alaska
 
 Stations used:
   AK.ANM AK.BPAW AK.BWN AK.CAST AK.COLD AK.KTH AK.MLY AK.NEA2 
   AK.RDOG TA.B20K TA.B21K TA.C18K TA.C19K TA.D20K TA.D22K 
   TA.E18K TA.E19K TA.E21K TA.E22K TA.E23K TA.E24K TA.F15K 
   TA.F17K TA.F19K TA.F20K TA.F21K TA.F24K TA.G16K TA.G18K 
   TA.G19K TA.G21K TA.G23K TA.G24K TA.H17K TA.H18K TA.H19K 
   TA.H21K TA.H23K TA.H24K TA.I20K TA.I23K TA.J16K TA.J17K 
   TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 1.19e+23 dyne-cm
  Mw = 4.65 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      170    90    10
   NP2       80    80   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.19e+23      7      35
    N   0.00e+00     80     170
    P  -1.19e+23      7     305

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.00e+22
       Mxy     1.10e+23
       Mxz     3.58e+21
       Myy    -4.00e+22
       Myz     2.03e+22
       Mzz    -1.80e+15
                                                     
                                                     
                                                     
                                                     
                     ----##########                  
                 --------#############               
              -----------############# T #           
             -------------############   ##          
             -------------###################        
           P -------------####################       
         -   --------------####################      
        -------------------#####################     
        -------------------#####################     
       ---------------------###################--    
       ---------------------##############-------    
       ---------------------########-------------    
       --------------------#---------------------    
        #####################-------------------     
        #####################-------------------     
         ####################------------------      
          ####################----------------       
           ###################---------------        
             #################-------------          
              #################-----------           
                 ##############--------              
                     ##########----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.80e+15   3.58e+21  -2.03e+22 
  3.58e+21   4.00e+22  -1.10e+23 
 -2.03e+22  -1.10e+23  -4.00e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190702181707/index.html
	
Regional Moment Tensor (Mwr)
Moment 1.271e+16 N-m
Magnitude 4.67 Mwr
Depth 8.0 km
Percent DC 82%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 262 88 177
NP2 352 87 2

Principal Axes
Axis Value Plunge Azimuth
T 1.327e+16 N-m 4 217
N -0.121e+16 N-m 86 50
P -1.207e+16 N-m 1 307

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   350    80    -5   4.37 0.5143
WVFGRD96    4.0   350    85    -5   4.47 0.6417
WVFGRD96    6.0   170    90     0   4.54 0.7022
WVFGRD96    8.0   170    90     5   4.61 0.7453
WVFGRD96   10.0   170    90    10   4.65 0.7489
WVFGRD96   12.0   350    85     5   4.68 0.7414
WVFGRD96   14.0   350    85    10   4.71 0.7286
WVFGRD96   16.0   350    85     5   4.73 0.7094
WVFGRD96   18.0   350    85     5   4.75 0.6857
WVFGRD96   20.0   350    85     0   4.77 0.6586
WVFGRD96   22.0   350    80     5   4.78 0.6300
WVFGRD96   24.0   350    80     5   4.79 0.6003
WVFGRD96   26.0   350    80     0   4.80 0.5702
WVFGRD96   28.0   350    80     0   4.81 0.5404
WVFGRD96   30.0   170    90    10   4.82 0.5204
WVFGRD96   32.0   170    90    10   4.83 0.5042
WVFGRD96   34.0   170    90    10   4.84 0.4860
WVFGRD96   36.0   170    90    10   4.86 0.4689
WVFGRD96   38.0   170    90    10   4.88 0.4575
WVFGRD96   40.0   170    90    20   4.93 0.4537
WVFGRD96   42.0   350    90   -15   4.95 0.4524
WVFGRD96   44.0   170    90    15   4.97 0.4495
WVFGRD96   46.0   350    90   -15   4.98 0.4446
WVFGRD96   48.0   170    90    15   5.00 0.4393
WVFGRD96   50.0   350    90   -15   5.01 0.4344
WVFGRD96   52.0   350    90   -15   5.02 0.4306
WVFGRD96   54.0   170    90    15   5.03 0.4255
WVFGRD96   56.0   350    85   -10   5.04 0.4228
WVFGRD96   58.0   350    85   -10   5.05 0.4194
WVFGRD96   60.0   350    85   -10   5.06 0.4158
WVFGRD96   62.0   350    85   -10   5.06 0.4110
WVFGRD96   64.0   170    90    10   5.07 0.4066
WVFGRD96   66.0   350    90   -10   5.07 0.4028
WVFGRD96   68.0   170    90    10   5.08 0.3980
WVFGRD96   70.0   350    90   -10   5.08 0.3907
WVFGRD96   72.0   350    90    -5   5.08 0.3825
WVFGRD96   74.0   170    90     5   5.08 0.3738
WVFGRD96   76.0   350    90     0   5.08 0.3658
WVFGRD96   78.0   350    90     5   5.08 0.3589
WVFGRD96   80.0   170    85    -5   5.08 0.3541
WVFGRD96   82.0   350    90     5   5.09 0.3529
WVFGRD96   84.0   170    85    -5   5.09 0.3517
WVFGRD96   86.0   170    85    -5   5.10 0.3496
WVFGRD96   88.0   170    85    -5   5.10 0.3473
WVFGRD96   90.0   170    85    -5   5.10 0.3444
WVFGRD96   92.0   170    85    -5   5.11 0.3423
WVFGRD96   94.0   350    90     5   5.11 0.3407
WVFGRD96   96.0   170    90    -5   5.12 0.3388
WVFGRD96   98.0   350    90     5   5.12 0.3369

The best solution is

WVFGRD96   10.0   170    90    10   4.65 0.7489

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 02:20:14 PM CDT 2024