The ANSS event ID is ak0198ddkciq and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0198ddkciq/executive.
2019/07/01 23:10:34 61.217 -146.884 20.0 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/07/01 23:10:34:0 61.22 -146.88 20.0 3.7 Alaska Stations used: AK.BARN AK.BRLK AK.CAST AK.CNP AK.CRQ AK.CUT AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.FIRE AK.GLB AK.GLI AK.HDA AK.HIN AK.HMT AK.KLU AK.KNK AK.KTH AK.MCAR AK.MCK AK.PAX AK.PPLA AK.RC01 AK.RIDG AK.SCM AK.SKN AK.SLK AK.SUCK AK.SWD AK.TRF AK.WAX AK.YAH AT.MENT AT.PMR AV.STLK IU.COLA TA.J25K TA.J26L TA.K24K TA.K27K TA.L26K TA.L27K TA.M22K TA.M24K TA.M27K TA.N25K TA.O22K TA.P23K Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 5.50e+21 dyne-cm Mw = 3.76 Z = 32 km Plane Strike Dip Rake NP1 260 85 -65 NP2 1 25 -168 Principal Axes: Axis Value Plunge Azimuth T 5.50e+21 35 329 N 0.00e+00 25 78 P -5.50e+21 44 195 Moment Tensor: (dyne-cm) Component Value Mxx 4.75e+19 Mxy -2.32e+21 Mxz 4.87e+21 Myy 8.17e+20 Myz -6.52e+20 Mzz -8.65e+20 ###########--- ##################---- #######################----- ###### #################---- ######## T ##################----- ######### ###################----- #################################----- ###################################----- ###################################----- ###############################------##### ###################------------------##### ##########---------------------------##### ###---------------------------------###### -----------------------------------##### -----------------------------------##### --------------- ---------------##### -------------- P --------------##### ------------- -------------##### --------------------------#### -----------------------##### ------------------#### -----------### Global CMT Convention Moment Tensor: R T P -8.65e+20 4.87e+21 6.52e+20 4.87e+21 4.75e+19 2.32e+21 6.52e+20 2.32e+21 8.17e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190701231034/index.html |
STK = 260 DIP = 85 RAKE = -65 MW = 3.76 HS = 32.0
The NDK file is 20190701231034.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 90 40 90 3.24 0.2429 WVFGRD96 2.0 95 40 95 3.38 0.3343 WVFGRD96 3.0 265 45 90 3.44 0.3260 WVFGRD96 4.0 40 75 15 3.38 0.2869 WVFGRD96 5.0 40 80 15 3.41 0.2869 WVFGRD96 6.0 35 70 -15 3.43 0.2956 WVFGRD96 7.0 260 90 -55 3.41 0.3219 WVFGRD96 8.0 260 90 -60 3.48 0.3467 WVFGRD96 9.0 85 85 65 3.50 0.3819 WVFGRD96 10.0 85 85 65 3.51 0.4127 WVFGRD96 11.0 90 80 65 3.53 0.4414 WVFGRD96 12.0 90 80 65 3.54 0.4680 WVFGRD96 13.0 90 80 65 3.55 0.4923 WVFGRD96 14.0 90 80 65 3.57 0.5151 WVFGRD96 15.0 90 80 65 3.58 0.5362 WVFGRD96 16.0 85 85 60 3.59 0.5557 WVFGRD96 17.0 260 85 -60 3.60 0.5738 WVFGRD96 18.0 85 85 65 3.61 0.5919 WVFGRD96 19.0 260 85 -60 3.63 0.6094 WVFGRD96 20.0 80 90 60 3.64 0.6242 WVFGRD96 21.0 80 90 65 3.65 0.6393 WVFGRD96 22.0 260 85 -65 3.67 0.6552 WVFGRD96 23.0 80 90 65 3.68 0.6682 WVFGRD96 24.0 80 90 65 3.69 0.6810 WVFGRD96 25.0 260 85 -65 3.70 0.6953 WVFGRD96 26.0 80 90 65 3.71 0.7023 WVFGRD96 27.0 260 85 -65 3.72 0.7156 WVFGRD96 28.0 80 90 65 3.73 0.7181 WVFGRD96 29.0 260 85 -65 3.74 0.7292 WVFGRD96 30.0 80 90 65 3.75 0.7273 WVFGRD96 31.0 80 90 65 3.76 0.7301 WVFGRD96 32.0 260 85 -65 3.76 0.7362 WVFGRD96 33.0 260 85 -65 3.77 0.7355 WVFGRD96 34.0 80 90 65 3.77 0.7294 WVFGRD96 35.0 255 85 -65 3.78 0.7307 WVFGRD96 36.0 80 90 65 3.78 0.7241 WVFGRD96 37.0 255 85 -65 3.79 0.7230 WVFGRD96 38.0 80 90 65 3.79 0.7162 WVFGRD96 39.0 260 85 -65 3.79 0.7141 WVFGRD96 40.0 80 90 75 3.93 0.7061 WVFGRD96 41.0 260 90 -75 3.93 0.7020 WVFGRD96 42.0 80 90 75 3.94 0.6972 WVFGRD96 43.0 260 90 -75 3.94 0.6923 WVFGRD96 44.0 80 90 75 3.95 0.6867 WVFGRD96 45.0 85 85 75 3.95 0.6810 WVFGRD96 46.0 85 85 75 3.95 0.6753 WVFGRD96 47.0 260 90 -75 3.96 0.6678 WVFGRD96 48.0 85 85 75 3.96 0.6627 WVFGRD96 49.0 85 85 75 3.97 0.6562 WVFGRD96 50.0 85 85 75 3.97 0.6497 WVFGRD96 51.0 85 85 75 3.97 0.6429 WVFGRD96 52.0 85 85 75 3.98 0.6357 WVFGRD96 53.0 260 90 -75 3.98 0.6256 WVFGRD96 54.0 265 90 -80 3.99 0.6187 WVFGRD96 55.0 85 80 75 3.99 0.6153 WVFGRD96 56.0 170 -10 -5 4.00 0.6050 WVFGRD96 57.0 160 10 -15 4.01 0.5990 WVFGRD96 58.0 160 15 -15 4.02 0.5935 WVFGRD96 59.0 165 15 -10 4.02 0.5878
The best solution is
WVFGRD96 32.0 260 85 -65 3.76 0.7362
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00