Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is ld60171121 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ld60171121/executive.

2019/06/13 00:30:57 40.422 -77.506 26.7 3.44 Pennsylvania

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/06/13 00:30:57:0  40.42  -77.51  26.7 3.4 Pennsylvania
 
 Stations used:
   IU.SSPA LD.GEDE LD.MVL N4.M57A N4.P57A PE.IUPA PE.PACW 
   PE.PALB PE.PAMP PE.PSDB PE.PSRS 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +20
   rtr
   taper w 0.1
   hp c 0.05 n 3 
   lp c 0.20 n 3 
 
 Best Fitting Double Couple
  Mo = 1.33e+21 dyne-cm
  Mw = 3.35 
  Z  = 30 km
  Plane   Strike  Dip  Rake
   NP1      145    55    75
   NP2      350    38   110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.33e+21     75      11
    N   0.00e+00     12     154
    P  -1.33e+21      9     246

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.33e+20
       Mxy    -4.72e+20
       Mxz     4.15e+20
       Myy    -1.08e+21
       Myz     2.47e+20
       Mzz     1.21e+21
                                                     
                                                     
                                                     
                                                     
                     #######-------                  
                 ##############--------              
              --##################--------           
             --####################--------          
           ----######################--------        
          -----#######################--------       
         ------########################--------      
        --------########################--------     
        --------###########   ##########--------     
       ----------########## T ###########--------    
       ----------##########   ###########--------    
       -----------#######################--------    
       ------------######################--------    
        ------------#####################-------     
        -   ----------###################-------     
          P -----------#################-------      
            -------------###############------       
           ----------------############------        
             -----------------########-----          
              --------------------###-----           
                 ------------------####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.21e+21   4.15e+20  -2.47e+20 
  4.15e+20  -1.33e+20   4.72e+20 
 -2.47e+20   4.72e+20  -1.08e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190613003057/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 145
      DIP = 55
     RAKE = 75
       MW = 3.35
       HS = 30.0

The NDK file is 20190613003057.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2019/06/13 00:30:57:0  40.42  -77.51  26.7 3.4 Pennsylvania
 
 Stations used:
   IU.SSPA LD.GEDE LD.MVL N4.M57A N4.P57A PE.IUPA PE.PACW 
   PE.PALB PE.PAMP PE.PSDB PE.PSRS 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +20
   rtr
   taper w 0.1
   hp c 0.05 n 3 
   lp c 0.20 n 3 
 
 Best Fitting Double Couple
  Mo = 1.33e+21 dyne-cm
  Mw = 3.35 
  Z  = 30 km
  Plane   Strike  Dip  Rake
   NP1      145    55    75
   NP2      350    38   110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.33e+21     75      11
    N   0.00e+00     12     154
    P  -1.33e+21      9     246

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.33e+20
       Mxy    -4.72e+20
       Mxz     4.15e+20
       Myy    -1.08e+21
       Myz     2.47e+20
       Mzz     1.21e+21
                                                     
                                                     
                                                     
                                                     
                     #######-------                  
                 ##############--------              
              --##################--------           
             --####################--------          
           ----######################--------        
          -----#######################--------       
         ------########################--------      
        --------########################--------     
        --------###########   ##########--------     
       ----------########## T ###########--------    
       ----------##########   ###########--------    
       -----------#######################--------    
       ------------######################--------    
        ------------#####################-------     
        -   ----------###################-------     
          P -----------#################-------      
            -------------###############------       
           ----------------############------        
             -----------------########-----          
              --------------------###-----           
                 ------------------####              
                     ------------##                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.21e+21   4.15e+20  -2.47e+20 
  4.15e+20  -1.33e+20   4.72e+20 
 -2.47e+20   4.72e+20  -1.08e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190613003057/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +20
rtr
taper w 0.1
hp c 0.05 n 3 
lp c 0.20 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   280    70   -85   3.12 0.3573
WVFGRD96    2.0   100    75   -75   3.05 0.3657
WVFGRD96    3.0   100    75   -65   3.01 0.3892
WVFGRD96    4.0   100    75   -60   3.01 0.4036
WVFGRD96    5.0   300    70    60   3.05 0.4114
WVFGRD96    6.0   310    60    65   3.07 0.4181
WVFGRD96    7.0   315    55    70   3.10 0.4179
WVFGRD96    8.0   320    50    75   3.13 0.4147
WVFGRD96    9.0   155    50    95   3.16 0.4100
WVFGRD96   10.0   325    40    85   3.21 0.4029
WVFGRD96   11.0   330    35    95   3.25 0.3926
WVFGRD96   12.0   140    55    85   3.28 0.3851
WVFGRD96   13.0   140    55    85   3.30 0.3741
WVFGRD96   14.0   140    55    85   3.31 0.3527
WVFGRD96   15.0   130    50    75   3.30 0.3395
WVFGRD96   16.0   130    50    75   3.31 0.3267
WVFGRD96   17.0   125    55    70   3.32 0.3131
WVFGRD96   18.0   130    50    70   3.28 0.3010
WVFGRD96   19.0   150    75    70   3.33 0.3148
WVFGRD96   20.0   145    65    75   3.34 0.3333
WVFGRD96   21.0   145    65    75   3.35 0.3576
WVFGRD96   22.0   145    65    75   3.36 0.3758
WVFGRD96   23.0   145    60    75   3.35 0.3934
WVFGRD96   24.0   145    60    75   3.35 0.4110
WVFGRD96   25.0   145    60    75   3.36 0.4295
WVFGRD96   26.0   145    60    75   3.36 0.4430
WVFGRD96   27.0   145    60    75   3.36 0.4537
WVFGRD96   28.0   145    60    70   3.35 0.4691
WVFGRD96   29.0   145    60    75   3.36 0.4793
WVFGRD96   30.0   145    55    75   3.35 0.4888
WVFGRD96   31.0   145    55    75   3.35 0.4864
WVFGRD96   32.0   145    55    75   3.35 0.4847
WVFGRD96   33.0   145    55    75   3.35 0.4807
WVFGRD96   34.0   145    55    75   3.35 0.4796
WVFGRD96   35.0   145    55    75   3.35 0.4701
WVFGRD96   36.0   145    55    70   3.35 0.4720
WVFGRD96   37.0   145    55    70   3.36 0.4692
WVFGRD96   38.0   140    55    65   3.37 0.4714
WVFGRD96   39.0   140    55    65   3.38 0.4701
WVFGRD96   40.0   140    60    70   3.46 0.4605
WVFGRD96   41.0   145    60    70   3.48 0.4548
WVFGRD96   42.0   145    60    70   3.49 0.4512
WVFGRD96   43.0   145    60    70   3.51 0.4458
WVFGRD96   44.0   145    60    70   3.52 0.4439
WVFGRD96   45.0   145    60    65   3.52 0.4418
WVFGRD96   46.0   145    60    65   3.53 0.4390
WVFGRD96   47.0   145    60    65   3.54 0.4369
WVFGRD96   48.0   145    60    65   3.54 0.4384
WVFGRD96   49.0   145    55    70   3.55 0.4369

The best solution is

WVFGRD96   30.0   145    55    75   3.35 0.4888

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +20
rtr
taper w 0.1
hp c 0.05 n 3 
lp c 0.20 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Thu Apr 25 01:35:22 PM CDT 2024