Location

Location ANSS

The ANSS event ID is ak01972zidym and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak01972zidym/executive.

2019/06/03 18:05:25 63.092 -150.819 127.0 3.6 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/06/03 18:05:25:0  63.09 -150.82 127.0 3.6 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.DHY AK.FID AK.GHO AK.GLI AK.KNK AK.MCK 
   AK.MLY AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM 
   AK.SCRK AK.SKN AK.SSN AK.TRF AT.PMR AT.TTA TA.K24K TA.L19K 
   TA.M19K TA.M22K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 6.53e+21 dyne-cm
  Mw = 3.81 
  Z  = 118 km
  Plane   Strike  Dip  Rake
   NP1       47    69   103
   NP2      195    25    60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.53e+21     64     339
    N   0.00e+00     12     223
    P  -6.53e+21     22     127

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.80e+20
       Mxy     2.28e+21
       Mxz     3.80e+21
       Myy    -3.35e+21
       Myz    -2.75e+21
       Mzz     4.33e+21
                                                     
                                                     
                                                     
                                                     
                     -------#######                  
                 ------################              
              ------######################           
             -----#########################          
           ------##########################--        
          -----###########################----       
         -----##########   ##############------      
        ------########## T #############--------     
        -----###########   ############---------     
       -----##########################-----------    
       -----########################-------------    
       -----#######################--------------    
       -----#####################----------------    
        ----###################-----------------     
        -----################-------------------     
         ----#############-------------   -----      
          ----#########---------------- P ----       
           ----#####-------------------   ---        
             -##---------------------------          
              ###-------------------------           
                 ##--------------------              
                     #-------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.33e+21   3.80e+21   2.75e+21 
  3.80e+21  -9.80e+20  -2.28e+21 
  2.75e+21  -2.28e+21  -3.35e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190603180525/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 195
      DIP = 25
     RAKE = 60
       MW = 3.81
       HS = 118.0

The NDK file is 20190603180525.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    30    45   -85   3.02 0.2025
WVFGRD96    4.0   205    60   -95   3.09 0.1753
WVFGRD96    6.0   260    60    35   3.07 0.1877
WVFGRD96    8.0   265    55    40   3.14 0.2044
WVFGRD96   10.0   265    60    45   3.17 0.2182
WVFGRD96   12.0   205    75    75   3.17 0.2318
WVFGRD96   14.0   205    75    70   3.19 0.2428
WVFGRD96   16.0   205    75    70   3.22 0.2486
WVFGRD96   18.0   205    75    65   3.24 0.2510
WVFGRD96   20.0   205    75    65   3.26 0.2495
WVFGRD96   22.0   205    75    70   3.29 0.2450
WVFGRD96   24.0   205    75    70   3.31 0.2383
WVFGRD96   26.0   200    75    65   3.33 0.2294
WVFGRD96   28.0   200    75    65   3.34 0.2193
WVFGRD96   30.0   205    70    70   3.35 0.2087
WVFGRD96   32.0   200    60    70   3.35 0.1988
WVFGRD96   34.0   200    65    70   3.37 0.1891
WVFGRD96   36.0   210    40   -85   3.37 0.1924
WVFGRD96   38.0    25    50   -90   3.40 0.1961
WVFGRD96   40.0   210    40   -85   3.51 0.2080
WVFGRD96   42.0    25    50   -90   3.53 0.2032
WVFGRD96   44.0    30    50   -80   3.56 0.1968
WVFGRD96   46.0    25    55   -75   3.58 0.1916
WVFGRD96   48.0    25    55   -75   3.59 0.1875
WVFGRD96   50.0    30    55   -70   3.59 0.1832
WVFGRD96   52.0    30    55   -70   3.60 0.1790
WVFGRD96   54.0   200    70    50   3.61 0.1812
WVFGRD96   56.0   200    65    55   3.63 0.2025
WVFGRD96   58.0   190    60    55   3.64 0.2302
WVFGRD96   60.0   190    60    55   3.66 0.2652
WVFGRD96   62.0   185    55    55   3.68 0.3009
WVFGRD96   64.0   180    55    50   3.70 0.3368
WVFGRD96   66.0   180    55    50   3.71 0.3701
WVFGRD96   68.0   175    55    45   3.73 0.4032
WVFGRD96   70.0   185    45    50   3.73 0.4359
WVFGRD96   72.0   190    40    55   3.74 0.4697
WVFGRD96   74.0   185    40    50   3.75 0.4993
WVFGRD96   76.0   195    35    60   3.75 0.5239
WVFGRD96   78.0   190    35    55   3.76 0.5475
WVFGRD96   80.0   200    30    65   3.76 0.5684
WVFGRD96   82.0   200    30    65   3.76 0.5819
WVFGRD96   84.0   200    30    65   3.77 0.5925
WVFGRD96   86.0   200    30    65   3.77 0.6029
WVFGRD96   88.0   185    30    55   3.78 0.6127
WVFGRD96   90.0   185    30    55   3.78 0.6212
WVFGRD96   92.0   185    30    55   3.78 0.6282
WVFGRD96   94.0   195    25    65   3.78 0.6353
WVFGRD96   96.0   195    25    65   3.79 0.6415
WVFGRD96   98.0   195    25    65   3.79 0.6471
WVFGRD96  100.0   195    25    65   3.79 0.6507
WVFGRD96  102.0   195    25    65   3.79 0.6550
WVFGRD96  104.0   195    25    65   3.79 0.6571
WVFGRD96  106.0   195    25    65   3.79 0.6593
WVFGRD96  108.0   195    25    60   3.80 0.6616
WVFGRD96  110.0   195    25    60   3.80 0.6630
WVFGRD96  112.0   195    25    60   3.80 0.6635
WVFGRD96  114.0   195    25    60   3.80 0.6642
WVFGRD96  116.0   195    25    60   3.80 0.6636
WVFGRD96  118.0   195    25    60   3.81 0.6644
WVFGRD96  120.0   195    25    60   3.81 0.6641
WVFGRD96  122.0   195    25    60   3.81 0.6628
WVFGRD96  124.0   190    25    55   3.81 0.6624
WVFGRD96  126.0   190    25    55   3.82 0.6611
WVFGRD96  128.0   190    25    55   3.82 0.6599
WVFGRD96  130.0   190    25    55   3.82 0.6585
WVFGRD96  132.0   190    25    55   3.82 0.6575
WVFGRD96  134.0   190    25    55   3.82 0.6552
WVFGRD96  136.0   190    25    55   3.83 0.6537
WVFGRD96  138.0   195    25    60   3.83 0.6509
WVFGRD96  140.0   205    20    70   3.83 0.6501
WVFGRD96  142.0   195    25    60   3.83 0.6470
WVFGRD96  144.0   210    20    70   3.83 0.6458
WVFGRD96  146.0   195    25    60   3.83 0.6425
WVFGRD96  148.0   215    20    75   3.84 0.6417

The best solution is

WVFGRD96  118.0   195    25    60   3.81 0.6644

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 01:24:02 PM CDT 2024