The ANSS event ID is ak0196rhyig7 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0196rhyig7/executive.
2019/05/27 23:44:49 60.246 -152.515 99.4 4.2 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/05/27 23:44:49:0 60.25 -152.51 99.4 4.2 Alaska Stations used: AK.BRLK AK.CAPN AK.CNP AK.CUT AK.GHO AK.HOM AK.KNK AK.PWL AK.RC01 AK.SAW AK.SKN AK.SLK AK.SSN AK.SWD AT.PMR AV.ILSW AV.STLK TA.L19K TA.M19K TA.M20K TA.M22K TA.N17K TA.N18K TA.N19K TA.O18K TA.O19K TA.P18K TA.P19K TA.P23K TA.Q19K TA.Q20K Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.43e+22 dyne-cm Mw = 4.29 Z = 94 km Plane Strike Dip Rake NP1 55 65 30 NP2 311 63 152 Principal Axes: Axis Value Plunge Azimuth T 3.43e+22 38 274 N 0.00e+00 52 91 P -3.43e+22 1 183 Moment Tensor: (dyne-cm) Component Value Mxx -3.41e+22 Mxy -3.03e+21 Mxz 1.83e+21 Myy 2.10e+22 Myz -1.66e+22 Mzz 1.31e+22 -------------- ---------------------- ---------------------------- ------------------------------ ###########----------------------- ###############--------------------# ###################----------------### #######################------------##### #########################---------###### ####### ##################-----######### ####### T ####################--########## ####### ####################-########### ############################-----######### ########################---------####### ######################------------###### ##################---------------##### ############---------------------### -##-----------------------------## ------------------------------ ---------------------------- --------- ---------- ----- P ------ Global CMT Convention Moment Tensor: R T P 1.31e+22 1.83e+21 1.66e+22 1.83e+21 -3.41e+22 3.03e+21 1.66e+22 3.03e+21 2.10e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190527234449/index.html |
STK = 55 DIP = 65 RAKE = 30 MW = 4.29 HS = 94.0
The NDK file is 20190527234449.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 115 55 -60 3.45 0.2192 WVFGRD96 4.0 325 65 15 3.46 0.2525 WVFGRD96 6.0 145 65 20 3.54 0.2852 WVFGRD96 8.0 145 65 20 3.62 0.3039 WVFGRD96 10.0 145 70 20 3.66 0.3055 WVFGRD96 12.0 145 70 15 3.69 0.2980 WVFGRD96 14.0 145 70 15 3.72 0.2838 WVFGRD96 16.0 145 70 15 3.74 0.2648 WVFGRD96 18.0 225 70 -25 3.77 0.2595 WVFGRD96 20.0 225 70 -20 3.79 0.2618 WVFGRD96 22.0 225 70 -20 3.82 0.2691 WVFGRD96 24.0 230 70 15 3.83 0.2798 WVFGRD96 26.0 230 70 15 3.86 0.2973 WVFGRD96 28.0 225 70 -10 3.89 0.3156 WVFGRD96 30.0 50 80 20 3.91 0.3332 WVFGRD96 32.0 50 80 20 3.93 0.3533 WVFGRD96 34.0 50 80 20 3.95 0.3707 WVFGRD96 36.0 50 80 20 3.98 0.3853 WVFGRD96 38.0 50 80 20 4.01 0.3984 WVFGRD96 40.0 55 70 30 4.08 0.4211 WVFGRD96 42.0 55 70 30 4.10 0.4239 WVFGRD96 44.0 55 75 30 4.12 0.4308 WVFGRD96 46.0 55 75 30 4.14 0.4417 WVFGRD96 48.0 55 75 30 4.16 0.4550 WVFGRD96 50.0 55 75 30 4.17 0.4672 WVFGRD96 52.0 55 70 30 4.19 0.4812 WVFGRD96 54.0 55 70 30 4.20 0.4921 WVFGRD96 56.0 55 70 30 4.21 0.5082 WVFGRD96 58.0 55 70 30 4.21 0.5208 WVFGRD96 60.0 55 70 30 4.22 0.5354 WVFGRD96 62.0 55 70 35 4.23 0.5476 WVFGRD96 64.0 55 70 35 4.24 0.5593 WVFGRD96 66.0 55 70 30 4.24 0.5693 WVFGRD96 68.0 55 70 30 4.25 0.5766 WVFGRD96 70.0 55 70 30 4.25 0.5851 WVFGRD96 72.0 55 70 30 4.26 0.5935 WVFGRD96 74.0 55 70 30 4.26 0.5997 WVFGRD96 76.0 55 65 30 4.26 0.6050 WVFGRD96 78.0 55 65 30 4.27 0.6097 WVFGRD96 80.0 55 65 30 4.27 0.6137 WVFGRD96 82.0 55 65 30 4.27 0.6156 WVFGRD96 84.0 55 65 30 4.28 0.6172 WVFGRD96 86.0 55 65 30 4.28 0.6188 WVFGRD96 88.0 55 65 30 4.28 0.6211 WVFGRD96 90.0 55 65 30 4.29 0.6234 WVFGRD96 92.0 55 65 30 4.29 0.6246 WVFGRD96 94.0 55 65 30 4.29 0.6252 WVFGRD96 96.0 55 65 30 4.30 0.6242 WVFGRD96 98.0 55 65 30 4.30 0.6234 WVFGRD96 100.0 55 65 30 4.30 0.6225 WVFGRD96 102.0 55 65 30 4.31 0.6222 WVFGRD96 104.0 55 65 30 4.31 0.6210 WVFGRD96 106.0 55 60 30 4.31 0.6197 WVFGRD96 108.0 55 60 30 4.31 0.6189 WVFGRD96 110.0 55 60 30 4.31 0.6168 WVFGRD96 112.0 55 60 30 4.32 0.6152 WVFGRD96 114.0 55 60 30 4.32 0.6143 WVFGRD96 116.0 55 60 30 4.32 0.6123 WVFGRD96 118.0 55 60 30 4.32 0.6075 WVFGRD96 120.0 55 60 30 4.33 0.6067 WVFGRD96 122.0 55 60 30 4.33 0.6049 WVFGRD96 124.0 55 60 30 4.33 0.6012 WVFGRD96 126.0 50 60 25 4.34 0.5995 WVFGRD96 128.0 50 60 25 4.34 0.5956 WVFGRD96 130.0 50 60 25 4.34 0.5939 WVFGRD96 132.0 50 60 25 4.35 0.5913 WVFGRD96 134.0 50 60 25 4.35 0.5888 WVFGRD96 136.0 50 60 25 4.35 0.5849 WVFGRD96 138.0 50 60 25 4.35 0.5823 WVFGRD96 140.0 50 60 25 4.36 0.5807 WVFGRD96 142.0 50 60 25 4.36 0.5752 WVFGRD96 144.0 50 60 25 4.36 0.5742 WVFGRD96 146.0 50 60 25 4.36 0.5699 WVFGRD96 148.0 50 60 25 4.36 0.5685
The best solution is
WVFGRD96 94.0 55 65 30 4.29 0.6252
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00