The ANSS event ID is ak0196h8mxap and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0196h8mxap/executive.
2019/05/21 03:12:55 61.466 -149.638 46.9 3.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/05/21 03:12:55:0 61.47 -149.64 46.9 3.6 Alaska Stations used: AK.FID AK.FIRE AK.GHO AK.PPLA AK.PWL AK.RC01 AK.SAW AK.SCM AK.SKN AK.SSN AT.PMR AV.STLK TA.M24K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.53e+21 dyne-cm Mw = 3.81 Z = 66 km Plane Strike Dip Rake NP1 140 90 -155 NP2 50 65 0 Principal Axes: Axis Value Plunge Azimuth T 6.53e+21 17 272 N 0.00e+00 65 140 P -6.53e+21 17 8 Moment Tensor: (dyne-cm) Component Value Mxx -5.83e+21 Mxy -1.03e+21 Mxz -1.77e+21 Myy 5.83e+21 Myz -2.11e+21 Mzz 0.00e+00 -------- --- ------------ P ------- #-------------- ---------- ###--------------------------- #######--------------------------# #########------------------------### ############---------------------##### ###############-------------------###### ################-----------------####### ## ##############-------------########## ## T ###############-----------########### ## #################-------############# #######################----############### ######################################## ######################---############### ##################--------############ ##############-------------######### #########------------------####### ---------------------------### ---------------------------# ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 0.00e+00 -1.77e+21 2.11e+21 -1.77e+21 -5.83e+21 1.03e+21 2.11e+21 1.03e+21 5.83e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190521031255/index.html |
STK = 50 DIP = 65 RAKE = 0 MW = 3.81 HS = 66.0
The NDK file is 20190521031255.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 310 85 5 2.79 0.1849 WVFGRD96 2.0 130 90 -5 2.94 0.2537 WVFGRD96 3.0 130 90 -25 3.02 0.2736 WVFGRD96 4.0 315 80 25 3.07 0.2914 WVFGRD96 5.0 310 90 25 3.11 0.3039 WVFGRD96 6.0 130 85 -25 3.14 0.3163 WVFGRD96 7.0 130 85 -20 3.18 0.3288 WVFGRD96 8.0 310 90 25 3.23 0.3406 WVFGRD96 9.0 310 90 25 3.25 0.3483 WVFGRD96 10.0 310 90 20 3.27 0.3515 WVFGRD96 11.0 130 90 -20 3.29 0.3520 WVFGRD96 12.0 130 90 -20 3.31 0.3491 WVFGRD96 13.0 125 80 -20 3.33 0.3453 WVFGRD96 14.0 220 75 -10 3.34 0.3416 WVFGRD96 15.0 220 75 -10 3.35 0.3438 WVFGRD96 16.0 220 75 -10 3.37 0.3449 WVFGRD96 17.0 220 80 -10 3.38 0.3459 WVFGRD96 18.0 235 80 -10 3.38 0.3466 WVFGRD96 19.0 235 80 -10 3.39 0.3478 WVFGRD96 20.0 235 80 -10 3.40 0.3495 WVFGRD96 21.0 60 75 20 3.43 0.3508 WVFGRD96 22.0 60 75 20 3.44 0.3579 WVFGRD96 23.0 60 75 20 3.45 0.3640 WVFGRD96 24.0 60 75 15 3.45 0.3713 WVFGRD96 25.0 60 75 15 3.46 0.3775 WVFGRD96 26.0 60 70 15 3.47 0.3861 WVFGRD96 27.0 55 75 10 3.47 0.3948 WVFGRD96 28.0 55 75 10 3.48 0.4035 WVFGRD96 29.0 55 75 5 3.49 0.4120 WVFGRD96 30.0 55 70 5 3.50 0.4208 WVFGRD96 31.0 55 70 0 3.51 0.4286 WVFGRD96 32.0 55 70 0 3.52 0.4349 WVFGRD96 33.0 55 70 0 3.52 0.4401 WVFGRD96 34.0 55 70 -5 3.53 0.4447 WVFGRD96 35.0 55 70 -5 3.54 0.4475 WVFGRD96 36.0 55 75 0 3.55 0.4492 WVFGRD96 37.0 55 75 0 3.56 0.4506 WVFGRD96 38.0 55 75 5 3.58 0.4562 WVFGRD96 39.0 55 75 5 3.60 0.4631 WVFGRD96 40.0 55 65 10 3.64 0.4746 WVFGRD96 41.0 55 65 10 3.66 0.4762 WVFGRD96 42.0 55 65 5 3.67 0.4777 WVFGRD96 43.0 55 70 5 3.67 0.4786 WVFGRD96 44.0 55 65 5 3.69 0.4793 WVFGRD96 45.0 55 65 5 3.70 0.4803 WVFGRD96 46.0 55 65 5 3.70 0.4823 WVFGRD96 47.0 55 65 5 3.71 0.4841 WVFGRD96 48.0 55 65 5 3.72 0.4856 WVFGRD96 49.0 55 65 5 3.73 0.4882 WVFGRD96 50.0 55 65 5 3.73 0.4884 WVFGRD96 51.0 55 65 5 3.74 0.4918 WVFGRD96 52.0 55 65 5 3.74 0.4932 WVFGRD96 53.0 55 65 5 3.75 0.4949 WVFGRD96 54.0 55 65 5 3.76 0.4954 WVFGRD96 55.0 55 65 5 3.76 0.4965 WVFGRD96 56.0 55 65 5 3.77 0.4978 WVFGRD96 57.0 55 65 5 3.77 0.4976 WVFGRD96 58.0 50 60 0 3.79 0.5004 WVFGRD96 59.0 50 60 0 3.79 0.5005 WVFGRD96 60.0 55 70 0 3.78 0.4991 WVFGRD96 61.0 50 60 0 3.80 0.5010 WVFGRD96 62.0 50 65 0 3.80 0.5011 WVFGRD96 63.0 50 65 0 3.80 0.5013 WVFGRD96 64.0 50 65 0 3.80 0.5009 WVFGRD96 65.0 50 65 0 3.81 0.5007 WVFGRD96 66.0 50 65 0 3.81 0.5013 WVFGRD96 67.0 50 65 0 3.81 0.4996 WVFGRD96 68.0 50 65 0 3.82 0.5005 WVFGRD96 69.0 50 65 0 3.82 0.4999 WVFGRD96 70.0 50 65 0 3.82 0.4983 WVFGRD96 71.0 50 65 0 3.83 0.4985 WVFGRD96 72.0 50 65 0 3.83 0.4964 WVFGRD96 73.0 50 65 0 3.83 0.4965 WVFGRD96 74.0 50 65 0 3.83 0.4954 WVFGRD96 75.0 50 65 0 3.84 0.4937 WVFGRD96 76.0 50 65 0 3.84 0.4932 WVFGRD96 77.0 50 65 0 3.84 0.4915 WVFGRD96 78.0 50 65 0 3.84 0.4914 WVFGRD96 79.0 55 75 -5 3.84 0.4895
The best solution is
WVFGRD96 66.0 50 65 0 3.81 0.5013
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00