Location

Location ANSS

The ANSS event ID is ak0195zdvbuz and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0195zdvbuz/executive.

2019/05/10 23:52:45 60.274 -150.933 51.4 4.2 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/05/10 23:52:45:0  60.27 -150.93  51.4 4.2 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CNP AK.DIV AK.KNK AK.PPLA AK.PWL AK.RC01 
   AK.SKN AK.SLK AK.SSN AK.SWD AT.PMR AV.ILSW AV.RED AV.STLK 
   TA.M19K TA.M20K TA.M22K TA.N18K TA.O18K TA.O19K TA.O22K 
   TA.P18K TA.P19K TA.Q19K 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 5.37e+22 dyne-cm
  Mw = 4.42 
  Z  = 60 km
  Plane   Strike  Dip  Rake
   NP1      163    81   -160
   NP2       70    70   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.37e+22      7     295
    N   0.00e+00     68     187
    P  -5.37e+22     21      28

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.67e+22
       Mxy    -4.00e+22
       Mxz    -1.29e+22
       Myy     3.26e+22
       Myz    -1.46e+22
       Mzz    -5.99e+21
                                                     
                                                     
                                                     
                                                     
                     #-------------                  
                 #####-----------------              
              ########------------   -----           
             #########------------ P ------          
           ############-----------   --------        
            ###########-----------------------       
          T ###########------------------------      
        #   ############-----------------------#     
        ################---------------------###     
       ##################------------------######    
       ##################----------------########    
       ###################------------###########    
       ###################---------##############    
        ###################---##################     
        ################----####################     
         -------------------###################      
          -------------------#################       
           -------------------###############        
             ------------------############          
              -----------------###########           
                 ---------------#######              
                     -------------#                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.99e+21  -1.29e+22   1.46e+22 
 -1.29e+22  -2.67e+22   4.00e+22 
  1.46e+22   4.00e+22   3.26e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190510235245/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 70
      DIP = 70
     RAKE = -10
       MW = 4.42
       HS = 60.0

The NDK file is 20190510235245.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   165    80     5   3.46 0.2071
WVFGRD96    2.0   165    75     0   3.59 0.2766
WVFGRD96    3.0   170    70    15   3.65 0.2984
WVFGRD96    4.0   165    90    20   3.68 0.3133
WVFGRD96    5.0   345    80   -20   3.72 0.3245
WVFGRD96    6.0   170    80    30   3.76 0.3328
WVFGRD96    7.0   260    70    15   3.79 0.3526
WVFGRD96    8.0   260    70    20   3.84 0.3758
WVFGRD96    9.0   260    70    20   3.86 0.3895
WVFGRD96   10.0   260    70    15   3.88 0.3998
WVFGRD96   11.0   260    75    20   3.90 0.4084
WVFGRD96   12.0   255    80    15   3.91 0.4162
WVFGRD96   13.0   255    85    20   3.94 0.4242
WVFGRD96   14.0    75    80   -15   3.95 0.4345
WVFGRD96   15.0    75    80   -15   3.97 0.4417
WVFGRD96   16.0    75    80   -15   3.98 0.4481
WVFGRD96   17.0    75    80   -10   3.99 0.4538
WVFGRD96   18.0    75    80   -10   4.00 0.4593
WVFGRD96   19.0    75    80    -5   4.01 0.4649
WVFGRD96   20.0    75    80    -5   4.02 0.4705
WVFGRD96   21.0    75    75    -5   4.04 0.4766
WVFGRD96   22.0    75    75    -5   4.05 0.4826
WVFGRD96   23.0    75    75    -5   4.06 0.4890
WVFGRD96   24.0    75    75    -5   4.07 0.4958
WVFGRD96   25.0    75    75   -10   4.08 0.5023
WVFGRD96   26.0    75    75    -5   4.09 0.5083
WVFGRD96   27.0    75    75    -5   4.09 0.5147
WVFGRD96   28.0    75    75    -5   4.10 0.5208
WVFGRD96   29.0    70    70   -20   4.14 0.5265
WVFGRD96   30.0    70    70   -20   4.15 0.5324
WVFGRD96   31.0    70    70   -20   4.16 0.5387
WVFGRD96   32.0    70    70   -20   4.17 0.5452
WVFGRD96   33.0    70    70   -20   4.18 0.5509
WVFGRD96   34.0    70    70   -20   4.19 0.5572
WVFGRD96   35.0    70    70   -20   4.20 0.5612
WVFGRD96   36.0    70    70   -20   4.21 0.5657
WVFGRD96   37.0    70    70   -15   4.22 0.5711
WVFGRD96   38.0    70    70   -10   4.23 0.5754
WVFGRD96   39.0    70    70   -10   4.24 0.5815
WVFGRD96   40.0    70    60   -15   4.29 0.5867
WVFGRD96   41.0    70    60   -10   4.30 0.5921
WVFGRD96   42.0    70    60   -10   4.31 0.5968
WVFGRD96   43.0    70    60   -15   4.32 0.6019
WVFGRD96   44.0    70    60   -15   4.33 0.6044
WVFGRD96   45.0    70    60   -15   4.34 0.6080
WVFGRD96   46.0    70    65   -15   4.35 0.6111
WVFGRD96   47.0    70    65   -15   4.35 0.6135
WVFGRD96   48.0    70    65   -15   4.36 0.6168
WVFGRD96   49.0    70    65   -15   4.37 0.6185
WVFGRD96   50.0    70    65   -15   4.38 0.6202
WVFGRD96   51.0    70    65   -15   4.38 0.6229
WVFGRD96   52.0    70    65   -15   4.39 0.6237
WVFGRD96   53.0    70    65   -15   4.40 0.6252
WVFGRD96   54.0    70    65   -15   4.40 0.6260
WVFGRD96   55.0    70    65   -15   4.41 0.6256
WVFGRD96   56.0    70    70   -15   4.41 0.6269
WVFGRD96   57.0    70    70   -10   4.41 0.6269
WVFGRD96   58.0    70    70   -10   4.41 0.6272
WVFGRD96   59.0    70    70   -10   4.42 0.6271
WVFGRD96   60.0    70    70   -10   4.42 0.6273
WVFGRD96   61.0    70    70   -10   4.43 0.6263
WVFGRD96   62.0    70    70   -10   4.43 0.6271
WVFGRD96   63.0    70    70   -10   4.43 0.6258
WVFGRD96   64.0    70    70   -10   4.44 0.6254
WVFGRD96   65.0    70    70   -10   4.44 0.6245
WVFGRD96   66.0    70    75   -10   4.44 0.6236
WVFGRD96   67.0    70    75   -10   4.45 0.6235
WVFGRD96   68.0    70    75   -10   4.45 0.6221
WVFGRD96   69.0    70    75   -10   4.45 0.6214
WVFGRD96   70.0    70    75   -10   4.46 0.6194
WVFGRD96   71.0    70    75   -10   4.46 0.6193
WVFGRD96   72.0    70    75   -10   4.46 0.6173
WVFGRD96   73.0    70    75    -5   4.46 0.6162
WVFGRD96   74.0    70    75    -5   4.46 0.6149
WVFGRD96   75.0    70    75    -5   4.46 0.6132
WVFGRD96   76.0    70    75    -5   4.46 0.6123
WVFGRD96   77.0    70    75    -5   4.47 0.6107
WVFGRD96   78.0    70    75    -5   4.47 0.6078
WVFGRD96   79.0    70    75    -5   4.47 0.6076
WVFGRD96   80.0    70    75    -5   4.47 0.6050
WVFGRD96   81.0    75    75     0   4.46 0.6026
WVFGRD96   82.0    75    75     0   4.46 0.6024
WVFGRD96   83.0    75    75     0   4.47 0.6001
WVFGRD96   84.0    75    75     0   4.47 0.5987
WVFGRD96   85.0    75    80     0   4.47 0.5975
WVFGRD96   86.0    75    80     0   4.47 0.5956
WVFGRD96   87.0    75    80     0   4.47 0.5944
WVFGRD96   88.0    75    80     0   4.48 0.5926
WVFGRD96   89.0    75    80     0   4.48 0.5907
WVFGRD96   90.0    75    80     0   4.48 0.5895
WVFGRD96   91.0    75    80     0   4.48 0.5872
WVFGRD96   92.0    75    80     5   4.48 0.5863
WVFGRD96   93.0    75    80     5   4.48 0.5841
WVFGRD96   94.0    75    80     5   4.48 0.5831
WVFGRD96   95.0    75    80     5   4.48 0.5825
WVFGRD96   96.0    75    80     5   4.49 0.5796
WVFGRD96   97.0    75    80     5   4.49 0.5787
WVFGRD96   98.0    75    80     5   4.49 0.5781
WVFGRD96   99.0    75    80     5   4.49 0.5759

The best solution is

WVFGRD96   60.0    70    70   -10   4.42 0.6273

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 12:44:42 PM CDT 2024