Location

Location ANSS

The ANSS event ID is ak0195xfh9zo and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0195xfh9zo/executive.

2019/05/09 05:29:58 66.297 -157.237 7.4 4.4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/05/09 05:29:58:0  66.30 -157.24   7.4 4.4 Alaska
 
 Stations used:
   AK.ANM AK.BPAW AK.CAST AK.COLD AK.KTH AK.NEA2 AK.RDOG 
   TA.B21K TA.C16K TA.C18K TA.D19K TA.D20K TA.D22K TA.D23K 
   TA.E18K TA.E19K TA.E22K TA.E23K TA.E24K TA.F15K TA.F17K 
   TA.F19K TA.F20K TA.F21K TA.F24K TA.G16K TA.G18K TA.G19K 
   TA.G21K TA.G23K TA.G24K TA.H17K TA.H18K TA.H19K TA.H21K 
   TA.H23K TA.H24K TA.I17K TA.I20K TA.I21K TA.I23K TA.J16K 
   TA.J17K TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 3.20e+22 dyne-cm
  Mw = 4.27 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      155    75   -45
   NP2      260    47   -159
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.20e+22     17     213
    N   0.00e+00     43     320
    P  -3.20e+22     42     107

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.88e+22
       Mxy     1.84e+22
       Mxz    -2.97e+21
       Myy    -7.45e+21
       Myz    -2.02e+22
       Mzz    -1.13e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 --####################              
              -----#######################           
             -------#######################          
           ---------#########################        
          ----------####--------------########       
         ----------##----------------------####      
        --------#####-------------------------##     
        -----#########--------------------------     
       ----############--------------------------    
       ---#############--------------------------    
       --###############--------------   --------    
       -#################------------- P --------    
        ##################------------   -------     
        ###################---------------------     
         ###################-------------------      
          ###################-----------------       
           ######   ###########--------------        
             #### T ############-----------          
              ###   #############---------           
                 ##################----              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.13e+22  -2.97e+21   2.02e+22 
 -2.97e+21   1.88e+22  -1.84e+22 
  2.02e+22  -1.84e+22  -7.45e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190509052958/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 155
      DIP = 75
     RAKE = -45
       MW = 4.27
       HS = 10.0

The NDK file is 20190509052958.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2019/05/09 05:29:58:0  66.30 -157.24   7.4 4.4 Alaska
 
 Stations used:
   AK.ANM AK.BPAW AK.CAST AK.COLD AK.KTH AK.NEA2 AK.RDOG 
   TA.B21K TA.C16K TA.C18K TA.D19K TA.D20K TA.D22K TA.D23K 
   TA.E18K TA.E19K TA.E22K TA.E23K TA.E24K TA.F15K TA.F17K 
   TA.F19K TA.F20K TA.F21K TA.F24K TA.G16K TA.G18K TA.G19K 
   TA.G21K TA.G23K TA.G24K TA.H17K TA.H18K TA.H19K TA.H21K 
   TA.H23K TA.H24K TA.I17K TA.I20K TA.I21K TA.I23K TA.J16K 
   TA.J17K TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 3.20e+22 dyne-cm
  Mw = 4.27 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      155    75   -45
   NP2      260    47   -159
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.20e+22     17     213
    N   0.00e+00     43     320
    P  -3.20e+22     42     107

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.88e+22
       Mxy     1.84e+22
       Mxz    -2.97e+21
       Myy    -7.45e+21
       Myz    -2.02e+22
       Mzz    -1.13e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 --####################              
              -----#######################           
             -------#######################          
           ---------#########################        
          ----------####--------------########       
         ----------##----------------------####      
        --------#####-------------------------##     
        -----#########--------------------------     
       ----############--------------------------    
       ---#############--------------------------    
       --###############--------------   --------    
       -#################------------- P --------    
        ##################------------   -------     
        ###################---------------------     
         ###################-------------------      
          ###################-----------------       
           ######   ###########--------------        
             #### T ############-----------          
              ###   #############---------           
                 ##################----              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.13e+22  -2.97e+21   2.02e+22 
 -2.97e+21   1.88e+22  -1.84e+22 
  2.02e+22  -1.84e+22  -7.45e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190509052958/index.html
	

Regional Moment Tensor (Mwr)
Moment 3.156e+15 N-m
Magnitude 4.27 Mwr
Depth 7.0 km
Percent DC 100%
Half Duration -
Catalog US
Data Source US 2
Contributor US 2

Nodal Planes
Plane Strike Dip Rake
NP1 267 41 -145
NP2 149 68 -55

Principal Axes
Axis Value Plunge Azimuth
T 3.152e+15 N-m 16 214
N 0.007e+15 N-m 32 314
P -3.159e+15 N-m 53 102

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   170    70   -20   3.89 0.3577
WVFGRD96    2.0   340    55   -30   4.03 0.4459
WVFGRD96    3.0   165    90   -35   4.06 0.4605
WVFGRD96    4.0   160    80   -50   4.13 0.5024
WVFGRD96    5.0   155    80   -50   4.15 0.5494
WVFGRD96    6.0   155    75   -50   4.17 0.5887
WVFGRD96    7.0   155    75   -45   4.18 0.6181
WVFGRD96    8.0   150    70   -50   4.25 0.6461
WVFGRD96    9.0   150    70   -50   4.26 0.6601
WVFGRD96   10.0   155    75   -45   4.27 0.6637
WVFGRD96   11.0   155    75   -40   4.27 0.6614
WVFGRD96   12.0   155    75   -40   4.28 0.6560
WVFGRD96   13.0   160    80   -35   4.29 0.6480
WVFGRD96   14.0   160    80   -35   4.30 0.6370
WVFGRD96   15.0   160    80   -35   4.31 0.6231
WVFGRD96   16.0   165    90   -35   4.32 0.6093
WVFGRD96   17.0   165    90   -35   4.33 0.5939
WVFGRD96   18.0   345    85    35   4.33 0.5807
WVFGRD96   19.0   345    85    35   4.34 0.5643
WVFGRD96   20.0   345    80    35   4.34 0.5478
WVFGRD96   21.0   345    80    35   4.35 0.5315
WVFGRD96   22.0   345    80    35   4.36 0.5152
WVFGRD96   23.0   345    80    35   4.36 0.4988
WVFGRD96   24.0   345    80    35   4.37 0.4826
WVFGRD96   25.0   345    80    35   4.37 0.4666
WVFGRD96   26.0   160    80    35   4.37 0.4460
WVFGRD96   27.0   160    80    35   4.38 0.4357
WVFGRD96   28.0   160    80    35   4.39 0.4254
WVFGRD96   29.0   160    80    35   4.39 0.4149

The best solution is

WVFGRD96   10.0   155    75   -45   4.27 0.6637

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 12:38:00 PM CDT 2024