Location

Location ANSS

The ANSS event ID is ak0194tvwxby and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0194tvwxby/executive.

2019/04/15 14:25:27 60.649 -141.512 14.6 3.8 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2019/04/15 14:25:27:0  60.65 -141.51  14.6 3.8 Alaska
 
 Stations used:
   AK.BAL AK.BARK AK.BCP AK.BGLC AK.CYK AK.DIV AK.DOT AK.FID 
   AK.GLB AK.GRIN AK.KIAG AK.KNK AK.MESA AK.NICH AK.PAX 
   AK.RIDG AK.RKAV AK.SAMH AK.SCRK AK.SSP AK.VRDI AK.YAH 
   AT.MENT AV.WACK AV.WAZA CN.BRWY CN.BVCY CN.HYT CN.YUK2 
   CN.YUK6 CN.YUK7 CN.YUK8 TA.K24K TA.K27K TA.L27K TA.L29M 
   TA.M26K TA.M27K TA.M29M TA.M30M TA.N31M TA.O28M TA.O29M 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 1.10e+22 dyne-cm
  Mw = 3.96 
  Z  = 26 km
  Plane   Strike  Dip  Rake
   NP1      269    77   -98
   NP2      120    15   -60
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.10e+22     32       5
    N   0.00e+00      7     271
    P  -1.10e+22     57     169

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.79e+21
       Mxy     1.35e+21
       Mxz     9.77e+21
       Myy    -4.19e+19
       Myz    -4.74e+20
       Mzz    -4.75e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ##############   ###########           
             ############### T ############          
           #################   ##############        
          ####################################       
         ######################################      
        -#######################################     
        -#######################################     
       -############-------------------##########    
       --#-------------------------------------##    
       ##----------------------------------------    
       ##----------------------------------------    
        ##--------------------------------------     
        ###-----------------   -----------------     
         ###---------------- P ----------------      
          ###---------------   ---------------       
           ####------------------------------        
             ####--------------------------          
              #####---------------------##           
                 #######-----------####              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.75e+21   9.77e+21   4.74e+20 
  9.77e+21   4.79e+21  -1.35e+21 
  4.74e+20  -1.35e+21  -4.19e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190415142527/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 120
      DIP = 15
     RAKE = -60
       MW = 3.96
       HS = 26.0

The NDK file is 20190415142527.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    95    45    90   3.49 0.2725
WVFGRD96    2.0   270    45    90   3.63 0.3658
WVFGRD96    3.0    90    40    90   3.68 0.3359
WVFGRD96    4.0    90    35    85   3.68 0.2974
WVFGRD96    5.0   185    10     0   3.68 0.3314
WVFGRD96    6.0   180    10    -5   3.69 0.3979
WVFGRD96    7.0   180    10    -5   3.69 0.4511
WVFGRD96    8.0   170    10   -15   3.78 0.4885
WVFGRD96    9.0   165    10   -20   3.79 0.5380
WVFGRD96   10.0   165    10   -20   3.80 0.5796
WVFGRD96   11.0   165    15   -20   3.80 0.6145
WVFGRD96   12.0   155    15   -30   3.81 0.6452
WVFGRD96   13.0   120    10   -65   3.82 0.6701
WVFGRD96   14.0   125    15   -60   3.83 0.6929
WVFGRD96   15.0   120    15   -65   3.84 0.7134
WVFGRD96   16.0   115    15   -70   3.85 0.7310
WVFGRD96   17.0   115    15   -70   3.86 0.7460
WVFGRD96   18.0   115    15   -70   3.87 0.7585
WVFGRD96   19.0   115    15   -70   3.88 0.7688
WVFGRD96   20.0   115    15   -70   3.89 0.7770
WVFGRD96   21.0   120    15   -65   3.91 0.7841
WVFGRD96   22.0   115    15   -70   3.92 0.7902
WVFGRD96   23.0   110    15   -75   3.93 0.7944
WVFGRD96   24.0   120    15   -60   3.94 0.7978
WVFGRD96   25.0   120    15   -60   3.95 0.8002
WVFGRD96   26.0   120    15   -60   3.96 0.8012
WVFGRD96   27.0   120    15   -60   3.97 0.8003
WVFGRD96   28.0   115    10   -70   3.98 0.7995
WVFGRD96   29.0   125    10   -55   3.99 0.7971
WVFGRD96   30.0   130    10   -50   4.00 0.7934
WVFGRD96   31.0   130    10   -50   4.01 0.7883
WVFGRD96   32.0   130    10   -50   4.01 0.7813
WVFGRD96   33.0   135    10   -45   4.02 0.7729
WVFGRD96   34.0   135    10   -45   4.02 0.7632
WVFGRD96   35.0   140    10   -40   4.03 0.7521
WVFGRD96   36.0   140    10   -40   4.03 0.7402
WVFGRD96   37.0   145    10   -35   4.03 0.7285
WVFGRD96   38.0   145    10   -35   4.03 0.7158
WVFGRD96   39.0   155    10   -25   4.03 0.7022
WVFGRD96   40.0   140     5   -40   4.18 0.6880
WVFGRD96   41.0   155     5   -25   4.18 0.6776
WVFGRD96   42.0   160     5   -15   4.19 0.6661
WVFGRD96   43.0   170     5    -5   4.19 0.6549
WVFGRD96   44.0   175     5     0   4.20 0.6425
WVFGRD96   45.0   185     5    10   4.20 0.6301
WVFGRD96   46.0   185    10    10   4.20 0.6180
WVFGRD96   47.0   195    10    25   4.20 0.6064
WVFGRD96   48.0   200    10    30   4.21 0.5948
WVFGRD96   49.0   210    10    40   4.21 0.5831
WVFGRD96   50.0   215    25    60   4.21 0.5784
WVFGRD96   51.0   215    25    60   4.22 0.5755
WVFGRD96   52.0   215    25    60   4.22 0.5728
WVFGRD96   53.0   220    25    65   4.23 0.5705
WVFGRD96   54.0   220    25    70   4.24 0.5683
WVFGRD96   55.0   220    25    70   4.24 0.5657
WVFGRD96   56.0   220    30    70   4.24 0.5643
WVFGRD96   57.0   220    30    70   4.25 0.5631
WVFGRD96   58.0   220    30    75   4.26 0.5615
WVFGRD96   59.0   220    30    75   4.26 0.5600
WVFGRD96   30.0   130    10   -50   4.00 0.7934
WVFGRD96   31.0   130    10   -50   4.01 0.7883
WVFGRD96   32.0   130    10   -50   4.01 0.7813
WVFGRD96   33.0   135    10   -45   4.02 0.7729
WVFGRD96   34.0   135    10   -45   4.02 0.7632
WVFGRD96   35.0   140    10   -40   4.03 0.7521
WVFGRD96   36.0   140    10   -40   4.03 0.7402
WVFGRD96   37.0   145    10   -35   4.03 0.7285
WVFGRD96   38.0   145    10   -35   4.03 0.7158
WVFGRD96   39.0   155    10   -25   4.03 0.7022
WVFGRD96   40.0   140     5   -40   4.18 0.6880
WVFGRD96   41.0   155     5   -25   4.18 0.6776
WVFGRD96   42.0   160     5   -15   4.19 0.6661
WVFGRD96   43.0   170     5    -5   4.19 0.6549
WVFGRD96   44.0   175     5     0   4.20 0.6425
WVFGRD96   45.0   185     5    10   4.20 0.6301
WVFGRD96   46.0   185    10    10   4.20 0.6180
WVFGRD96   47.0   195    10    25   4.20 0.6064
WVFGRD96   48.0   200    10    30   4.21 0.5948
WVFGRD96   49.0   210    10    40   4.21 0.5831
WVFGRD96   50.0   215    25    60   4.21 0.5784
WVFGRD96   51.0   215    25    60   4.22 0.5755
WVFGRD96   52.0   215    25    60   4.22 0.5728
WVFGRD96   53.0   220    25    65   4.23 0.5705
WVFGRD96   54.0   220    25    70   4.24 0.5683
WVFGRD96   55.0   220    25    70   4.24 0.5657
WVFGRD96   56.0   220    30    70   4.24 0.5643
WVFGRD96   57.0   220    30    70   4.25 0.5631
WVFGRD96   58.0   220    30    75   4.26 0.5615
WVFGRD96   59.0   220    30    75   4.26 0.5600
WVFGRD96   30.0   130    10   -50   4.00 0.7934
WVFGRD96   31.0   130    10   -50   4.01 0.7883
WVFGRD96   32.0   130    10   -50   4.01 0.7813
WVFGRD96   33.0   135    10   -45   4.02 0.7729
WVFGRD96   34.0   135    10   -45   4.02 0.7632
WVFGRD96   35.0   140    10   -40   4.03 0.7521
WVFGRD96   36.0   140    10   -40   4.03 0.7402
WVFGRD96   37.0   145    10   -35   4.03 0.7285
WVFGRD96   38.0   145    10   -35   4.03 0.7158
WVFGRD96   39.0   155    10   -25   4.03 0.7022
WVFGRD96   40.0   140     5   -40   4.18 0.6880
WVFGRD96   41.0   155     5   -25   4.18 0.6776
WVFGRD96   42.0   160     5   -15   4.19 0.6661
WVFGRD96   43.0   170     5    -5   4.19 0.6549
WVFGRD96   44.0   175     5     0   4.20 0.6425
WVFGRD96   45.0   185     5    10   4.20 0.6301
WVFGRD96   46.0   185    10    10   4.20 0.6180
WVFGRD96   47.0   195    10    25   4.20 0.6064
WVFGRD96   48.0   200    10    30   4.21 0.5948
WVFGRD96   49.0   210    10    40   4.21 0.5831
WVFGRD96   50.0   215    25    60   4.21 0.5784
WVFGRD96   51.0   215    25    60   4.22 0.5755
WVFGRD96   52.0   215    25    60   4.22 0.5728
WVFGRD96   53.0   220    25    65   4.23 0.5705
WVFGRD96   54.0   220    25    70   4.24 0.5683
WVFGRD96   55.0   220    25    70   4.24 0.5657
WVFGRD96   56.0   220    30    70   4.24 0.5643
WVFGRD96   57.0   220    30    70   4.25 0.5631
WVFGRD96   58.0   220    30    75   4.26 0.5615
WVFGRD96   59.0   220    30    75   4.26 0.5600

The best solution is

WVFGRD96   26.0   120    15   -60   3.96 0.8012

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Apr 25 11:12:50 AM CDT 2024