The ANSS event ID is ak0193rv320m and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0193rv320m/executive.
2019/03/23 15:14:44 61.526 -149.862 47.4 4.1 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/03/23 15:14:44:0 61.53 -149.86 47.4 4.1 Alaska Stations used: AK.CUT AK.GHO AK.KLU AK.KNK AK.PWL AK.RC01 AK.SAW AK.SCM AK.SLK AK.SWD AT.PMR AV.STLK GM.AD09 TA.M23K TA.M24K TA.O22K TA.P19K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.04e+22 dyne-cm Mw = 4.14 Z = 49 km Plane Strike Dip Rake NP1 230 55 -50 NP2 354 51 -133 Principal Axes: Axis Value Plunge Azimuth T 2.04e+22 2 293 N 0.00e+00 32 24 P -2.04e+22 58 199 Moment Tensor: (dyne-cm) Component Value Mxx -1.96e+21 Mxy -9.10e+21 Mxz 8.94e+21 Myy 1.67e+22 Myz 2.33e+21 Mzz -1.47e+22 #######------- #############--------- ##################---------- ####################---------- ####################---########### ################--------########### T #############------------########### ###########---------------########### ############-----------------########### ###########-------------------############ ##########---------------------########### #########----------------------########### ########-----------------------########### ######------------------------########## #####----------- -----------########## ###------------ P ----------########## ##------------ ----------######### #------------------------######### ----------------------######## --------------------######## ----------------###### ----------#### Global CMT Convention Moment Tensor: R T P -1.47e+22 8.94e+21 -2.33e+21 8.94e+21 -1.96e+21 9.10e+21 -2.33e+21 9.10e+21 1.67e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190323151444/index.html |
STK = 230 DIP = 55 RAKE = -50 MW = 4.14 HS = 49.0
The NDK file is 20190323151444.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2019/03/23 15:14:44:0 61.53 -149.86 47.4 4.1 Alaska Stations used: AK.CUT AK.GHO AK.KLU AK.KNK AK.PWL AK.RC01 AK.SAW AK.SCM AK.SLK AK.SWD AT.PMR AV.STLK GM.AD09 TA.M23K TA.M24K TA.O22K TA.P19K Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.04e+22 dyne-cm Mw = 4.14 Z = 49 km Plane Strike Dip Rake NP1 230 55 -50 NP2 354 51 -133 Principal Axes: Axis Value Plunge Azimuth T 2.04e+22 2 293 N 0.00e+00 32 24 P -2.04e+22 58 199 Moment Tensor: (dyne-cm) Component Value Mxx -1.96e+21 Mxy -9.10e+21 Mxz 8.94e+21 Myy 1.67e+22 Myz 2.33e+21 Mzz -1.47e+22 #######------- #############--------- ##################---------- ####################---------- ####################---########### ################--------########### T #############------------########### ###########---------------########### ############-----------------########### ###########-------------------############ ##########---------------------########### #########----------------------########### ########-----------------------########### ######------------------------########## #####----------- -----------########## ###------------ P ----------########## ##------------ ----------######### #------------------------######### ----------------------######## --------------------######## ----------------###### ----------#### Global CMT Convention Moment Tensor: R T P -1.47e+22 8.94e+21 -2.33e+21 8.94e+21 -1.96e+21 9.10e+21 -2.33e+21 9.10e+21 1.67e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190323151444/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 15 45 85 3.34 0.2307 WVFGRD96 2.0 15 45 85 3.49 0.3191 WVFGRD96 3.0 25 40 95 3.53 0.3069 WVFGRD96 4.0 345 70 50 3.51 0.3280 WVFGRD96 5.0 345 70 50 3.54 0.3512 WVFGRD96 6.0 345 70 45 3.55 0.3666 WVFGRD96 7.0 345 65 45 3.58 0.3753 WVFGRD96 8.0 350 60 50 3.65 0.3874 WVFGRD96 9.0 250 50 20 3.63 0.3914 WVFGRD96 10.0 255 55 30 3.65 0.4064 WVFGRD96 11.0 80 55 40 3.69 0.4196 WVFGRD96 12.0 75 60 35 3.70 0.4327 WVFGRD96 13.0 235 60 -35 3.72 0.4466 WVFGRD96 14.0 235 60 -35 3.73 0.4618 WVFGRD96 15.0 240 60 -30 3.74 0.4754 WVFGRD96 16.0 240 60 -30 3.75 0.4883 WVFGRD96 17.0 240 65 -30 3.77 0.5001 WVFGRD96 18.0 240 65 -35 3.79 0.5121 WVFGRD96 19.0 240 65 -35 3.80 0.5230 WVFGRD96 20.0 240 65 -35 3.81 0.5329 WVFGRD96 21.0 240 65 -35 3.82 0.5416 WVFGRD96 22.0 240 65 -35 3.83 0.5504 WVFGRD96 23.0 240 65 -35 3.84 0.5582 WVFGRD96 24.0 240 65 -40 3.86 0.5652 WVFGRD96 25.0 240 65 -35 3.86 0.5715 WVFGRD96 26.0 240 65 -35 3.87 0.5790 WVFGRD96 27.0 240 60 -25 3.87 0.5859 WVFGRD96 28.0 240 60 -25 3.88 0.5952 WVFGRD96 29.0 240 60 -25 3.89 0.6073 WVFGRD96 30.0 240 60 -25 3.90 0.6176 WVFGRD96 31.0 240 60 -25 3.91 0.6284 WVFGRD96 32.0 240 60 -25 3.91 0.6377 WVFGRD96 33.0 240 60 -25 3.92 0.6445 WVFGRD96 34.0 240 60 -25 3.93 0.6533 WVFGRD96 35.0 240 60 -30 3.94 0.6601 WVFGRD96 36.0 235 60 -35 3.96 0.6673 WVFGRD96 37.0 235 60 -35 3.97 0.6748 WVFGRD96 38.0 235 60 -35 3.98 0.6818 WVFGRD96 39.0 235 60 -40 4.00 0.6864 WVFGRD96 40.0 230 55 -45 4.07 0.6787 WVFGRD96 41.0 230 55 -45 4.08 0.6870 WVFGRD96 42.0 230 55 -45 4.09 0.6950 WVFGRD96 43.0 230 55 -45 4.10 0.6997 WVFGRD96 44.0 230 55 -45 4.10 0.7035 WVFGRD96 45.0 230 55 -45 4.11 0.7065 WVFGRD96 46.0 230 55 -50 4.12 0.7086 WVFGRD96 47.0 230 55 -50 4.13 0.7105 WVFGRD96 48.0 230 55 -50 4.13 0.7104 WVFGRD96 49.0 230 55 -50 4.14 0.7116 WVFGRD96 50.0 230 55 -50 4.14 0.7104 WVFGRD96 51.0 230 55 -50 4.15 0.7108 WVFGRD96 52.0 230 55 -50 4.15 0.7088 WVFGRD96 53.0 230 55 -50 4.15 0.7087 WVFGRD96 54.0 230 55 -50 4.16 0.7065 WVFGRD96 55.0 230 55 -50 4.16 0.7054 WVFGRD96 56.0 230 55 -50 4.16 0.7024 WVFGRD96 57.0 230 55 -50 4.16 0.7001 WVFGRD96 58.0 225 55 -55 4.17 0.6983 WVFGRD96 59.0 230 55 -50 4.17 0.6946
The best solution is
WVFGRD96 49.0 230 55 -50 4.14 0.7116
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00