The ANSS event ID is ak0193rv320m and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0193rv320m/executive.
2019/03/23 15:14:44 61.526 -149.862 47.4 4.1 Alaska
USGS/SLU Moment Tensor Solution
ENS 2019/03/23 15:14:44:0 61.53 -149.86 47.4 4.1 Alaska
Stations used:
AK.CUT AK.GHO AK.KLU AK.KNK AK.PWL AK.RC01 AK.SAW AK.SCM
AK.SLK AK.SWD AT.PMR AV.STLK GM.AD09 TA.M23K TA.M24K
TA.O22K TA.P19K
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.04e+22 dyne-cm
Mw = 4.14
Z = 49 km
Plane Strike Dip Rake
NP1 230 55 -50
NP2 354 51 -133
Principal Axes:
Axis Value Plunge Azimuth
T 2.04e+22 2 293
N 0.00e+00 32 24
P -2.04e+22 58 199
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.96e+21
Mxy -9.10e+21
Mxz 8.94e+21
Myy 1.67e+22
Myz 2.33e+21
Mzz -1.47e+22
#######-------
#############---------
##################----------
####################----------
####################---###########
################--------###########
T #############------------###########
###########---------------###########
############-----------------###########
###########-------------------############
##########---------------------###########
#########----------------------###########
########-----------------------###########
######------------------------##########
#####----------- -----------##########
###------------ P ----------##########
##------------ ----------#########
#------------------------#########
----------------------########
--------------------########
----------------######
----------####
Global CMT Convention Moment Tensor:
R T P
-1.47e+22 8.94e+21 -2.33e+21
8.94e+21 -1.96e+21 9.10e+21
-2.33e+21 9.10e+21 1.67e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190323151444/index.html
|
STK = 230
DIP = 55
RAKE = -50
MW = 4.14
HS = 49.0
The NDK file is 20190323151444.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2019/03/23 15:14:44:0 61.53 -149.86 47.4 4.1 Alaska
Stations used:
AK.CUT AK.GHO AK.KLU AK.KNK AK.PWL AK.RC01 AK.SAW AK.SCM
AK.SLK AK.SWD AT.PMR AV.STLK GM.AD09 TA.M23K TA.M24K
TA.O22K TA.P19K
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 2.04e+22 dyne-cm
Mw = 4.14
Z = 49 km
Plane Strike Dip Rake
NP1 230 55 -50
NP2 354 51 -133
Principal Axes:
Axis Value Plunge Azimuth
T 2.04e+22 2 293
N 0.00e+00 32 24
P -2.04e+22 58 199
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.96e+21
Mxy -9.10e+21
Mxz 8.94e+21
Myy 1.67e+22
Myz 2.33e+21
Mzz -1.47e+22
#######-------
#############---------
##################----------
####################----------
####################---###########
################--------###########
T #############------------###########
###########---------------###########
############-----------------###########
###########-------------------############
##########---------------------###########
#########----------------------###########
########-----------------------###########
######------------------------##########
#####----------- -----------##########
###------------ P ----------##########
##------------ ----------#########
#------------------------#########
----------------------########
--------------------########
----------------######
----------####
Global CMT Convention Moment Tensor:
R T P
-1.47e+22 8.94e+21 -2.33e+21
8.94e+21 -1.96e+21 9.10e+21
-2.33e+21 9.10e+21 1.67e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190323151444/index.html
|
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 15 45 85 3.34 0.2307
WVFGRD96 2.0 15 45 85 3.49 0.3191
WVFGRD96 3.0 25 40 95 3.53 0.3069
WVFGRD96 4.0 345 70 50 3.51 0.3280
WVFGRD96 5.0 345 70 50 3.54 0.3512
WVFGRD96 6.0 345 70 45 3.55 0.3666
WVFGRD96 7.0 345 65 45 3.58 0.3753
WVFGRD96 8.0 350 60 50 3.65 0.3874
WVFGRD96 9.0 250 50 20 3.63 0.3914
WVFGRD96 10.0 255 55 30 3.65 0.4064
WVFGRD96 11.0 80 55 40 3.69 0.4196
WVFGRD96 12.0 75 60 35 3.70 0.4327
WVFGRD96 13.0 235 60 -35 3.72 0.4466
WVFGRD96 14.0 235 60 -35 3.73 0.4618
WVFGRD96 15.0 240 60 -30 3.74 0.4754
WVFGRD96 16.0 240 60 -30 3.75 0.4883
WVFGRD96 17.0 240 65 -30 3.77 0.5001
WVFGRD96 18.0 240 65 -35 3.79 0.5121
WVFGRD96 19.0 240 65 -35 3.80 0.5230
WVFGRD96 20.0 240 65 -35 3.81 0.5329
WVFGRD96 21.0 240 65 -35 3.82 0.5416
WVFGRD96 22.0 240 65 -35 3.83 0.5504
WVFGRD96 23.0 240 65 -35 3.84 0.5582
WVFGRD96 24.0 240 65 -40 3.86 0.5652
WVFGRD96 25.0 240 65 -35 3.86 0.5715
WVFGRD96 26.0 240 65 -35 3.87 0.5790
WVFGRD96 27.0 240 60 -25 3.87 0.5859
WVFGRD96 28.0 240 60 -25 3.88 0.5952
WVFGRD96 29.0 240 60 -25 3.89 0.6073
WVFGRD96 30.0 240 60 -25 3.90 0.6176
WVFGRD96 31.0 240 60 -25 3.91 0.6284
WVFGRD96 32.0 240 60 -25 3.91 0.6377
WVFGRD96 33.0 240 60 -25 3.92 0.6445
WVFGRD96 34.0 240 60 -25 3.93 0.6533
WVFGRD96 35.0 240 60 -30 3.94 0.6601
WVFGRD96 36.0 235 60 -35 3.96 0.6673
WVFGRD96 37.0 235 60 -35 3.97 0.6748
WVFGRD96 38.0 235 60 -35 3.98 0.6818
WVFGRD96 39.0 235 60 -40 4.00 0.6864
WVFGRD96 40.0 230 55 -45 4.07 0.6787
WVFGRD96 41.0 230 55 -45 4.08 0.6870
WVFGRD96 42.0 230 55 -45 4.09 0.6950
WVFGRD96 43.0 230 55 -45 4.10 0.6997
WVFGRD96 44.0 230 55 -45 4.10 0.7035
WVFGRD96 45.0 230 55 -45 4.11 0.7065
WVFGRD96 46.0 230 55 -50 4.12 0.7086
WVFGRD96 47.0 230 55 -50 4.13 0.7105
WVFGRD96 48.0 230 55 -50 4.13 0.7104
WVFGRD96 49.0 230 55 -50 4.14 0.7116
WVFGRD96 50.0 230 55 -50 4.14 0.7104
WVFGRD96 51.0 230 55 -50 4.15 0.7108
WVFGRD96 52.0 230 55 -50 4.15 0.7088
WVFGRD96 53.0 230 55 -50 4.15 0.7087
WVFGRD96 54.0 230 55 -50 4.16 0.7065
WVFGRD96 55.0 230 55 -50 4.16 0.7054
WVFGRD96 56.0 230 55 -50 4.16 0.7024
WVFGRD96 57.0 230 55 -50 4.16 0.7001
WVFGRD96 58.0 225 55 -55 4.17 0.6983
WVFGRD96 59.0 230 55 -50 4.17 0.6946
The best solution is
WVFGRD96 49.0 230 55 -50 4.14 0.7116
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00