The ANSS event ID is ak0192hihfd0 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0192hihfd0/executive.
2019/02/23 12:54:02 66.287 -156.976 38.2 3.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2019/02/23 12:54:02:0 66.29 -156.98 38.2 3.5 Alaska Stations used: AK.ANM AK.COLD AK.NEA2 AT.TTA TA.C18K TA.D19K TA.D22K TA.D23K TA.E19K TA.E22K TA.E23K TA.F17K TA.F19K TA.F24K TA.G16K TA.G19K TA.G23K TA.G24K TA.H17K TA.H18K TA.H21K TA.J16K TA.J17K TA.J18K TA.J19K TA.J20K TA.K17K TA.K20K TA.TOLK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.53e+21 dyne-cm Mw = 3.39 Z = 10 km Plane Strike Dip Rake NP1 170 85 -30 NP2 263 60 -174 Principal Axes: Axis Value Plunge Azimuth T 1.53e+21 17 220 N 0.00e+00 60 341 P -1.53e+21 24 122 Moment Tensor: (dyne-cm) Component Value Mxx 4.56e+20 Mxy 1.26e+21 Mxz -1.71e+19 Myy -3.23e+20 Myz -7.63e+20 Mzz -1.33e+20 ---########### -------############### -----------################# ------------################## --------------#################### ---------------##################### ----------------###################### --------------####---------------####### ---------#########--------------------## ------#############----------------------# ----################---------------------- --##################---------------------- ####################---------------------- ####################-------------------- ####################------------ ----- ###################------------ P ---- ###################----------- --- #### ###########---------------- ## T ############------------- # ############------------ ##############-------- ##########---- Global CMT Convention Moment Tensor: R T P -1.33e+20 -1.71e+19 7.63e+20 -1.71e+19 4.56e+20 -1.26e+21 7.63e+20 -1.26e+21 -3.23e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20190223125402/index.html |
STK = 170 DIP = 85 RAKE = -30 MW = 3.39 HS = 10.0
The NDK file is 20190223125402.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 350 85 10 3.04 0.4297 WVFGRD96 2.0 350 90 5 3.17 0.6077 WVFGRD96 3.0 170 90 -5 3.21 0.6651 WVFGRD96 4.0 170 85 -15 3.25 0.6965 WVFGRD96 5.0 165 75 -35 3.32 0.7165 WVFGRD96 6.0 170 80 -25 3.31 0.7312 WVFGRD96 7.0 170 80 -25 3.33 0.7410 WVFGRD96 8.0 170 80 -30 3.36 0.7475 WVFGRD96 9.0 170 85 -30 3.38 0.7505 WVFGRD96 10.0 170 85 -30 3.39 0.7511 WVFGRD96 11.0 170 85 -25 3.40 0.7507 WVFGRD96 12.0 170 85 -25 3.41 0.7490 WVFGRD96 13.0 170 85 -25 3.42 0.7455 WVFGRD96 14.0 175 90 -20 3.43 0.7423 WVFGRD96 15.0 175 90 -20 3.44 0.7387 WVFGRD96 16.0 175 90 -20 3.45 0.7346 WVFGRD96 17.0 175 90 -15 3.46 0.7297 WVFGRD96 18.0 355 90 -15 3.46 0.7190 WVFGRD96 19.0 355 90 -15 3.47 0.7151 WVFGRD96 20.0 175 80 15 3.48 0.7178 WVFGRD96 21.0 355 90 -15 3.49 0.7031 WVFGRD96 22.0 175 80 15 3.50 0.7047 WVFGRD96 23.0 175 80 15 3.51 0.6975 WVFGRD96 24.0 175 80 15 3.51 0.6888 WVFGRD96 25.0 175 80 15 3.52 0.6796 WVFGRD96 26.0 175 80 15 3.53 0.6701 WVFGRD96 27.0 175 80 15 3.54 0.6595 WVFGRD96 28.0 175 80 15 3.55 0.6487 WVFGRD96 29.0 175 75 15 3.55 0.6385 WVFGRD96 30.0 175 75 15 3.56 0.6276 WVFGRD96 31.0 175 75 15 3.57 0.6166 WVFGRD96 32.0 175 75 15 3.58 0.6055 WVFGRD96 33.0 175 75 15 3.59 0.5936 WVFGRD96 34.0 175 80 15 3.59 0.5809 WVFGRD96 35.0 175 80 15 3.60 0.5700 WVFGRD96 36.0 175 80 15 3.62 0.5593 WVFGRD96 37.0 175 80 15 3.63 0.5490 WVFGRD96 38.0 350 80 -10 3.62 0.5365 WVFGRD96 39.0 355 80 -5 3.65 0.5265 WVFGRD96 40.0 350 75 -15 3.67 0.5177 WVFGRD96 41.0 350 85 -20 3.68 0.5095 WVFGRD96 42.0 175 90 -45 3.73 0.5055 WVFGRD96 43.0 175 85 -40 3.74 0.4987 WVFGRD96 44.0 175 85 -40 3.74 0.4920 WVFGRD96 45.0 175 85 -40 3.75 0.4855 WVFGRD96 46.0 0 85 45 3.76 0.4769 WVFGRD96 47.0 0 90 40 3.77 0.4702 WVFGRD96 48.0 175 85 -40 3.76 0.4674 WVFGRD96 49.0 175 80 -35 3.77 0.4636 WVFGRD96 50.0 175 80 -35 3.78 0.4603 WVFGRD96 51.0 85 80 10 3.75 0.4601 WVFGRD96 52.0 85 80 10 3.76 0.4605 WVFGRD96 53.0 85 80 10 3.77 0.4605 WVFGRD96 54.0 85 75 10 3.78 0.4610 WVFGRD96 55.0 85 75 10 3.78 0.4630 WVFGRD96 56.0 85 75 10 3.79 0.4652 WVFGRD96 57.0 85 75 10 3.80 0.4665 WVFGRD96 58.0 85 75 10 3.80 0.4678 WVFGRD96 59.0 85 75 10 3.81 0.4686
The best solution is
WVFGRD96 10.0 170 85 -30 3.39 0.7511
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00